Practical Byte-Granular Memory Blacklisting using Califorms”*

Hiroshi Sasaki, Miguel A. Arroyo, M. Tarek Ibn Ziad, Koustubha Bhat, Kanad Sinha, Simha Sethumadhavan

SUMMARY

Our MICRO 2019 paper presents Califorms, a novel hard-
ware primitive which provides both coarse- and fine-grained
memory safety with low area and performance overheads. To
the best of our knowledge, this is the first paper to propose a
practical solution for detecting intra-object overflows (over-
flows within an object), one of the prominent open problems
in area of memory safety and security.

Memory Safety. Historically, program memory safety viola-
tions have provided a significant opportunity for exploitation
by attackers: for instance, Microsoft recently revealed that
the root cause of around 70% of all exploits targeting their
products are software memory safety violations [1]. We also
often see news reporting that memory safety issues have
led to real-world incidents. For instance, a recent Google
Project Zero post said that hacked websites were used to in-
discriminately attack individuals who visited them through
vulnerabilities in iOS (subsequently Apple released a rebuttal
statement) [2]. To address these threats, software checking
tools (e.g., AddressSanitizer [3]) and commercial hardware
support for memory safety (e.g., Oracle’s ADI [4] and In-
tel’s MPX [5]) have enabled programmers to detect and fix
memory safety violations before deploying software.

Current software and hardware-supported solutions ex-
cel at providing coarse-grained, inter-object memory safety
which involves detecting memory accesses beyond arrays
and heap allocated regions (malloc’d struct and class in-
stances). However, they are not suitable for fine-grained
memory safety (i.e., intra-object memory safety—detecting
overflows within objects, such as fields within a struct, or
members within a class) due to the high performance over-
heads (2.2x performance and 1.1x memory overheads for
EffectiveSan [6] and 1.7x performance and 2.1x memory
overheads Intel MPX [5]) and/or need for making intrusive
changes to the source code. Intra-object memory safety prob-
lems are a serious threat. They manifest in real-world scenar-
ios such as type confusion vulnerabilities (e.g., CVE-2017-
5115) and uninitialized data leaks through padding bytes
(e.g., CVE-2014-1444), both recognized as high-impact secu-
rity classes.

*H. Sasaki, M. A. Arroyo, M. Tarek Ibn Ziad, K. Bhat, K. Sinha, and S.
Sethumadhavan, “Practical Byte-Granular Memory Blacklisting using Cali-
forms,” in Proceedings of the 52nd IEEE/ACM International Symposium on
Microarchitecture (MICRO), pp.558-571, Oct. 2019.

[Blacklisted Byte:
tommmmmmmoeooee et L2 Cache
L1D Cache
e s e e When blacklisted bytes are present,
e e el B cache lines are califormed
o 4 i T
Lo
H T 3 -1
H Natural o C: H
H HE H
5[\F\ I 0 T o | ID\]E g[l Header IF\O\O\D\]E
; . i
H Natural H Natural H
H Voo H
E[\U\D\1\5\E\A\5\E\]i i[\U\DH\S\E\A\S\E\]E
.) i ~ H

When blacklisted bytes are not present,
cache lines are preserved

Figure 1: Califorms offers memory safety by detecting ac-
cesses to blacklisted bytes in memory. Blacklisted bytes are
not stored beyond the L1 data cache and identified using a
special header in the L2 cache (and beyond) resulting in very
low overhead. The conversion between the formats happens
when lines are filled or spilled between L1 and L2 caches.
The absence of blacklisted bytes results in cache lines stored
in the same natural format across the memory system.

Califorms. Califorms is a novel hardware primitive which
allows blacklisting of a memory location (i.e., if accessed due
to programming errors or malicious attempts, it reports a
privileged exception) at byte granularity with low area and
performance overheads. The main obstacle to blacklisting a
memory region at a fine granularity (e.g., to prevent intra-
object overflows) is the associated overheads in maintaining
the metadata. We solve this problem based on the following
key observation: a blacklisted region need not store its meta-
data (indicating it is blacklisted) separately, but can rather
store them within itself (since it contains no useful data!). With
this principle, we utilize existing or added bytes between
object elements to blacklist a region. This in-place compact
data structure avoids additional operations for accessing the
metadata making it very performant in comparison.

The challenge lies in how to reduce the additional hard-
ware overhead required to identify normal data vs. metadata.
A naive implementation requires additional one bit (to spec-
ify normal data or metadata) per byte, which results in 12.5%
area overhead. We manage to reduce the overhead substan-
tially, to one bit per cache line (typically 64 bytes, thus area
overhead of 0.2%), by changing how data is stored within a
cache line. For cache lines which contain metadata (within
blacklisted bytes), the actual data is stored following the
“header”, which indicates the location of blacklisted bytes, as
shown in Figure 1.

H. Sasaki, M. Arroyo, M. Tarek Ibn Ziad, K. Bhat, K. Sinha, and S. Sethumadhavan

struct A { struct A_opportunistic { struct A_full { struct A_intelligent {
char c; char c; /* we protect every field with char c;
int i; /* compiler inserts padding * random blacklisted bytes */ int i;
char buf[64]; * bytes for alignment */ char blacklisted_bytes[2]; /* we protect boundaries
void (*fp)(); char blacklisted_bytes[3]; char c; * of arrays and pointers with

3 int i; char blacklisted_bytes[1]; * random blacklisted bytes */
char buf[64]; int i; char blacklisted_bytes[3];
void (*fp)(); char blacklisted_bytes[3]; char buf[64];

} char buf[64]; char blacklisted_bytes[2];

char blacklisted_bytes[2];
void (xfp)();

void (*fp)();
char blacklisted_bytes[3];

char blacklisted_bytes[1]; N

(a) Original. (b) Opportunistic.

(c) Full. (d) Intelligent.

Listing 1: (a) Original source code and examples of three blacklisted bytes harvesting strategies: (b) opportunistic
uses the existing padding bytes as blacklisted bytes, (c) full protect every field within the struct with blacklisted
bytes, and (d) intelligent surrounds arrays and pointers with blacklisted bytes.

With this support, it is easy to describe how a Califorms
based system for memory safety works. Blacklisted bytes,
either naturally harvested or manually inserted, are used to
indicate memory regions that should never be accessed by
a program. If an attacker accesses these regions, we detect
this rogue access without any additional metadata accesses
as our metadata resides inline.

Blacklisting with Califorms. One of the key ways in
which we mitigate the overheads for fine-grained memory
safety is by opportunistically harvesting padding bytes
(which store no useful data) in programs and by blacklisting
them. So how often do these occur in programs? Before we
answer this question, let us concretely understand padding
bytes with an example. Consider the struct A defined in
Listing 1(a). Let us say the compiler inserts a three-byte
padding in between char c and int i as in Listing 1(b)
because of the C language requirement that integers should
be padded to their natural size (which we assume to be
four bytes here). These types of paddings are not limited to
C/C++ but also required by many other languages and their
runtime implementations. We found that 45.7% and 41.0% of
structs within SPEC CPU2006 and V8, respectively, have at
least one byte of padding. This is encouraging since even
without introducing additional padding bytes (no memory
overhead), we can offer protection for certain compound
data types restricting the remaining attack surface.
Naturally, one might inquire about safety for the rest of
the program. To offer protection for all defined compound
data types, we can insert random sized blacklisted bytes,
between every field of a struct or member of a class as in
Listing 1(c) (full strategy). Random sized blacklisted bytes
are chosen to provide a probabilistic defense as fixed sized
blacklisted bytes can be jumped over by an attacker once
she identifies the actual size (and the exact memory layout).
Intuitively, the higher the unpredictability (or randomness)

within the memory layout, the higher the security level we
can offer.

System Design. The Califorms framework consists of three
major components:

o Architecture Support. A new ISA instruction that black-
lists memory locations at byte granularity and raises a
privileged exception upon misuse of blacklisted locations.

e Microarchitecture Design. New cache line formats, or
Califorms, that enable low cost access to the metadata—we
propose different Califorms for L1 vs. L2 and beyond.

o Software Design. Compiler, memory allocator and oper-
ating system extensions which insert the blacklisted bytes
at compile time and manages them via the new ISA in-
struction at runtime.

Performance. Our evaluation results reveal that our pro-
totyped hardware modifications add little or no impact on
cache access latencies (negligible performance overheads),
while the software modifications have 2.0 to 14.0% slow-
downs, depending on the blacklisted bytes insertion policy.

REFERENCES

[1] Matt Miller. Trends, challenge, and shifts in software vulnerability
mitigation. BlueHat IL, 2019.

[2] A very deep dive into ios exploit chains found in the wild.
https://googleprojectzero.blogspot.com/2019/08/a-very-deep-dive-
into-ios-exploit.html. [Online; accessed 25-Oct-2019].

[3] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitry Vyukov. AddressSanitizer: a fast address sanity checker. In
USENIX ATC ’12, 2012.

[4] Oracle. Hardware-assisted checking using Silicon Secured Memory
(SSM). https://docs.oracle.com/cd/E37069_01/html/E37085/gphwb.html,
2015.

[5] Oleksii Oleksenko, Dmitrii Kuvaiskii, Pramod Bhatotia, Pascal Felber,
and Christof Fetzer. Intel MPX explained: a cross-layer analysis of the
Intel MPX system stack. ACM POMACS, 2(2):28:1-28:30, June 2018.

[6] Gregory J Duck and Roland H C Yap. EffectiveSan: type and memory
error detection using dynamically typed C/C++. In PLDI ’18, 2018.

https://googleprojectzero.blogspot.com/2019/08/a-very-deep-dive-into-ios-exploit.html
https://googleprojectzero.blogspot.com/2019/08/a-very-deep-dive-into-ios-exploit.html
https://docs.oracle.com/cd/E37069_01/html/E37085/gphwb.html

Practical Byte-Granular Memory Blacklisting using Califorms

LONG-TERM IMPACT

The problem of memory safety errors is a long-standing issue
which has annoyed programmers to no end since the first
Morris Worm was released in 1988. Since then, it has driven
researchers to find practical solutions for the last 30 years.
Proposed solutions have since ranged from languages that
offer memory safety, to static analysis/compiler techniques
to identify and fix these errors before deployment, to runtime
hardware techniques for continuous detection/mitigation.
Even with these continuous efforts, we have yet to solve this
problem or even mitigate it to a significant extent. Why?
The main reason for this is that very few of the solutions are
practical, which should meet the following conditions: (a) be
performance- and energy-efficient, (b) be applicable to a large
fraction of devices, and (c) be cost-efficient to develop and
deploy. We discuss how each of these concerns are addressed
by Califorms and hence offer a significant chance of having
long-term impact.

e Performance- and Energy-Efficient. According to end
users demands, the performance and energy overheads
of memory safety solutions have to be as low as possible,
and definitely not greater than those due to programming
in a memory safe language (unfortunately most software-
based solutions will not meet this requirement). Further,
while the increased awareness of security is a recent (and
welcome) development, as performance gains wither in
the post-accelerator age, it is likely that system designers
will perform increasingly heroic, and perhaps, riskier opti-
mizations that can have unknown security consequences.
Califorms fits these requirements and has one of the lowest
overheads reported among prior work.

e Applicable to a Large Fraction of Devices. Security
is a full-system property, i.e., security of the system is
defined by the most insecure entity in the environment.
For instance, consider a home full of connected devices
where a firewall sanitizes external accesses. Even if the
firewall works as advertised, a (memory) vulnerability in
the internet connectivity of one of the devices (e.g., ther-
mal regulators, stoves, etc.) can completely compromise
the security of the entire system. With limited silicon,
power, and software budgets, introduction of non-trivial
software and/or hardware schemes is a non-starter for IoT
and cyber-physical systems. Yet, securing them is highly
critical as these devices increasingly form the backbone
of our infrastructure and personal lives. Califorms is not
just limited to 64-bit architectures, in fact, its design is
architecture width agnostic. Califorms can be easily ap-
plied across the spectrum of high-end enterprise to deeply
embedded systems. In contrast, current hardware based
whitelisting solutions, commercial or research, are lim-
ited to 64-bit architectures because of their fundamental

design assumptions and complexities. Califorms’s mini-
mal footprint makes it a good primitive for security in the
post-Moore’s Law era.

o Cost-Efficient to Develop and Deploy. From the pro-
grammers point of view, there are two main impediments
to the use of programming language approaches towards
memory safety. First, programmers are often unwilling
to change familiar workflows, and second, there is a sig-
nificant amount of legacy code that is just too expen-
sive/impossible to convert. Even annotations for security
has proven to be difficult to bring to practice. While it
would be valuable to program in newer languages, un-
safe languages are here for the foreseeable future. Cali-
forms is transparent and thus satisfies the requirements
of (majority of) programmers who do not have the re-
sources/incentive to invest in securing legacy code. For
hardware vendors, its simplicity implies Califorms can
be integrated in their existing design, even in the pres-
ence of tight development and power/area budgets, and
importantly, easily validated.

Impact on Researchers and Industry. The key design
choice which enabled Califorms to meet these goals is to
implement memory blacklisting in hardware. Whitelisting
approach currently dominates in the research community
when facing memory safety problems. However, in this
paper we advocate a blacklisting approach (as opposed to a
whitelisting approach) and encourage researchers/industry
to conduct further research in this direction. In theory,
perfect blacklisting is a strictly weaker form of security than
perfect whitelisting, but blacklisting is a more practical alter-
native because of its ease of deployment and low overheads.
Additionally, blacklisting techniques complement defenses
in existing systems better since they do not require intrusive
changes.

Finally, Califorms is a broader and more general concept
than what is presented in the paper, which has potential
applications other than memory safety (not restricting itself

to security applications). For instance, since it can essentially
be used to mark boundaries, we imagine Califorms can be
used to enable and throttle aggressive and/or inaccurate
microarchitectural speculation and prediction mechanisms.
Exploring these benefits are topics of our current research.

CITATION FOR TEST OF TIME AWARD IN
10 YEARS

This paper makes the first workable byte-granular memory
safety solution for a diverse environment ranging from high-
performance general purpose to resource-constrained IoT
devices.

	References

