
SPAM
Stateless Permutation of Application Memory

Mohamed Tarek Ibn Ziad, Miguel A. Arroyo, Simha Sethumadhavan
Columbia University

10/8/20

1

With LLVM

Presenter
Presentation Notes
Hello everyone, 

Welcome to our talk on the Stateless Permutation of Application Memory aka SPAM.



About us

Miguel A. Arroyo
5th year PhD Candidate

Mohamed Tarek
4th year PhD Candidate

2

@miguelaarroyo12 @M_TarekIbnZiad

https://miguel.arroyo.me https://cs.columbia.edu/~mtarek

Presenter
Presentation Notes
First, a bit about us. Mohamed and I are both PhD candidates at Columbia University working with Prof. Simha Sethumadhavan. 
�One of the core themes in our research thus far has been memory safety…

https://miguel.arroyo.me/
https://cs.columbia.edu/%7Emtarek


3

Memory Safety is a serious problem!

Presenter
Presentation Notes
More to the point, how the LACK of MEMORY SAFETY is a SERIOUS PROBLEM….
People can be discriminated against...



4

Memory Safety is a serious problem!

Presenter
Presentation Notes
Spied on...



5

Memory Safety is a serious problem!

Presenter
Presentation Notes
And targeted due to memory safety vulnerabilities.
Unfortunately, this problem REMAINS AS CURRENT today as it has ever been!



6

It’s easy to make mistakes

SEGFAULT!

Presenter
Presentation Notes
The reality is…that memory safety vulnerabilities are VERY EASY for developers to introduce UNWITTINGLY.

Just what is memory safety?
Put simply, it’s when you ACCESS MEMORY in an UNINTENDED way.
Think back to any time you mistakenly overflowed a buffer, forgot to free memory…




7

Google Chrome Bug Report 2015-2020

Source: https://www.chromium.org/Home/chromium-security/memory-safety

Microsoft Product CVEs

Source: Matt Miller, Microsoft Security Response Center (MSRC) - BlueHat 2019

Prevalence of Memory Safety Vulns

Presenter
Presentation Notes
To put into context just how COMMON these vulnerabilities are, consider that 70 percent of all the CVEs in Microsoft products EACH YEAR...are memory safety related.

Google as well, doesn’t seem to fare much better, with around 70% of bugs in Chrome being memory safety related!

It goes to show that memory safety is a widespread problem!



8

ATTACKERS

MEMORY SAFETY

Presenter
Presentation Notes
But, what makes the issue of memory safety so PROMINENT is that attackers LOVE memory safety vulnerabilities. 



9

Attackers Prefer Memory Safety Vulns

Microsoft Product Exploits

Source: Matt Miller, Microsoft Security Response Center (MSRC) - BlueHat 2019

Presenter
Presentation Notes
Data about CVEs EXPLOITED in Microsoft products show that the OVERWHELMING MAJORITY are memory safety related!

So what can we do about this?



10

À la carte solutions with additive overheads

Memory Safety Menu Price

Intra-Object Overflow $$$

Inter-Object Overflow $$

Buffer-Overread $

Control-Flow Hijack $

Use-after-free $$
Type Confusion $$$

Uninitialized Reads $$

Presenter
Presentation Notes
…A number of a la carte solutions have been proposed over the years solving subsets of the memory safety problem…unfortunately…trying to cover all problems comes with its own set of additive costs…



11

No common solution to all problems

Spectre Meltdown RowHammer RamBleed ColdBoot

Presenter
Presentation Notes
Moreover, the need to take into account hardware side-channels, such as speculative execution, have made the goal of achieving memory safety even more elusive. 



12

SPAM

Presenter
Presentation Notes
Which brings us to our work…SPAM, a unified solution that aims to provide protection against software- and hardware-based memory vulnerabilities.



Overview
13

Presenter
Presentation Notes
Let’s dive into the details and see how it works.




14

typedef struct {
char a;_______
double b;_____
char c[3];____
void (*fp)();_

} A_t;

A_t *A1 = malloc(
sizeof(A_t));

A_t *A2 = malloc(
sizeof(A_t));

free(A1);
A_t *A3 = malloc(

sizeof(A_t));

Struct Definition

main.c

Overview

Presenter
Presentation Notes
Let’s see how SPAM works. 

We start with the struct definition and C snippet shown on the left.



15

typedef struct {
char a;_______
double b;_____
char c[3];____
void (*fp)();_

} A_t;

A1

A_t *A1 = malloc(
sizeof(A_t));

A_t *A2 = malloc(
sizeof(A_t));

free(A1);
A_t *A3 = malloc(

sizeof(A_t));

Virtual Address (VA)

Object AllocationStruct Definition

main.c

Overview

Regular layout

Presenter
Presentation Notes
In case of using a regular malloc call, this is how the struct instance, A1, will be laid out in memory. We use a “packed” format for simplicity.  

The different fields, represented by four colors here, will have the same order as they appear in the source code. 



16

typedef struct {
char a;_______
double b;_____
char c[3];____
void (*fp)();_

} A_t;

A1

A_t *A1 = malloc(
sizeof(A_t));

A_t *A2 = malloc(
sizeof(A_t));

free(A1);
A_t *A3 = malloc(

sizeof(A_t));

Virtual Address (VA)

Object AllocationStruct Definition

main.c

Overview

Presenter
Presentation Notes
That gives an opportunity for the attacker to overwrite the function pointer using an overflow in the buffer c, just because they are adjacent in memory. 



17

typedef struct {
char a;_______
double b;_____
char c[3];____
void (*fp)();_

} A_t;

A1

A_t *A1 = malloc(
sizeof(A_t));

A_t *A2 = malloc(
sizeof(A_t));

free(A1);
A_t *A3 = malloc(

sizeof(A_t));

Virtual Address (VA)

Object AllocationStruct Definition

main.c

Overview

SPAM layout

Presenter
Presentation Notes
On the other hand, with SPAM in place, the allocation data will be permuted forcing the attacker to guess which order to use to overwrite the function pointer. 



18

typedef struct {
char a;_______
double b;_____
char c[3];____
void (*fp)();_

} A_t;

A1

A_t *A1 = malloc(
sizeof(A_t));

A_t *A2 = malloc(
sizeof(A_t));

free(A1);
A_t *A3 = malloc(

sizeof(A_t));

A2

Virtual Address (VA)

Object AllocationStruct Definition

main.c

Overview

Different Layouts!

Presenter
Presentation Notes
SPAM also guarantees that each allocation will have its own permutation.

For example, here…even though the two allocations, A1 and A2, are of the same type A_t, their layout is different!  

Furthermore, we can do this without ANY new metadata. This is very useful from a performance and security standpoint as we will show later.

So the question now is, how can SPAM achieve this?



Object Allocation

19

Presenter
Presentation Notes
Lets start with what happens during object allocation.



Object Allocation

20

typedef struct {
char a;_______
double b;_____
char c[3];____
void (*fp)();_

} A_t;

A1 0x4000

Virtual Address (VA)

?

Generating Permutations

Presenter
Presentation Notes
On the left, we have the struct and its corresponding memory layout.

Our goal is to get to the figure on the right where the struct contents are permuted.



Object Allocation

21

typedef struct {
char a;_______
double b;_____
char c[3];____
void (*fp)();_

} A_t;

A1 0x4000

Virtual Address (VA)

Generating Permutations

1. Request memory from allocator.

Presenter
Presentation Notes
To do so, we first request the needed memory from the allocator and get the address. 



Object Allocation

22

typedef struct {
char a;_______
double b;_____
char c[3];____
void (*fp)();_

} A_t;

A1 0x4000

Virtual Address (VA)

Generating Permutations

1. Request memory from allocator.
2. Use address as key for permutation.

Presenter
Presentation Notes
Then, we use the allocation address and size as KEY to generate a random permutation.

Since we are using the address as part of the key there is no additional metadata!



Object Allocation

23

typedef struct {
char a;_______
double b;_____
char c[3];____
void (*fp)();_

} A_t;

A1 0x4000

Virtual Address (VA)

Generating Permutations

1. Request memory from allocator.
2. Use address as key for permutation.
3. Write to memory in permuted order.

Presenter
Presentation Notes
Finally, we will use this permutation every time we access this particular allocation. 

Now, we have a fully permuted object as shown on the right.



Object Allocation

24

typedef struct {
char a;_______
double b;_____
char c[3];____
void (*fp)();_

} A_t;

A1 0x4000

Virtual Address (VA)

Generating Permutations

A total of 16! permutations

1. Request memory from allocator.
2. Use address as key for permutation.
3. Write to memory in permuted order.

Presenter
Presentation Notes
Our current configuration parameters allow us to achieve up to 16! Permutations per each allocation. 

We can extend this to 64! if needed.



25

typedef struct {
char a;_______
double b;_____
char c[3];____
void (*fp)();_

} A_t;

A1

free

A_t *A1 = malloc(
sizeof(A_t));

A_t *A2 = malloc(
sizeof(A_t));

free(A1);
A_t *A3 = malloc(

sizeof(A_t));

A2

A1 A3

Virtual Address (VA)

Object Allocation Object Deallocation & ReuseStruct Definition

main.c

Overview

Presenter
Presentation Notes
What will happen when the object is deallocated?



Object 
Deallocation & 
Reuse

26

Presenter
Presentation Notes
Okay. let’s talk about object deallocation & reuse, a potential source of temporal memory safety vulnerabilities.



Object Deallocation & Reuse

27

A1 0x00004000

Time

Presenter
Presentation Notes
For performance reasons, … 



Object Deallocation & Reuse

28

A1 0x00004000

free

Time

Presenter
Presentation Notes
… memory that is recently freed is often reused …



Object Deallocation & Reuse

29

A1 0x00004000

free

A3 0x00004000

Time

Presenter
Presentation Notes
meaning…the same virtual address will be assigned to a new object. 



Object Deallocation & Reuse

30

A1 0x00004000

free

A3 0x00004000

Time

Same address 
means same 

layout!

Presenter
Presentation Notes
Using the same address for the new object means having the same permuted layout…leaving us vulnerable to use-after-free attacks.



Object Deallocation & Reuse

31

A1 0x00004000

free

A3 0xCAFE4000

Time

Alias Number

Presenter
Presentation Notes
To avoid using the same permutation for the new object, we generate a random number, called the alias number, upon object allocation and use it to tag the MSBs of the allocation address. 

In this case, we use 0xCAFE as an alias number for allocation A3.





Object Deallocation & Reuse

32

A1 0x00004000

free

A3 0xCAFE4000

Time

Presenter
Presentation Notes
As every object instance gets its own alias number, each object will have its own permutation. 



Object Deallocation & Reuse

33

A1 0x00004000

free

A3 0xCAFE4000

Time

Different Layouts!

Presenter
Presentation Notes
So in short, the alias number is used to ensure that the same memory region will be permuted differently when it is reused … simply avoiding issues such as use-after-frees AND without introducing any metadata.



Overview

34

typedef struct {
char a;_______
double b;_____
char c[3];____
void (*fp)();_

} A_t;

A1

A_t *A1 = malloc(
sizeof(A_t));

A_t *A2 = malloc(
sizeof(A_t));

free(A1);
A_t *A3 = malloc(

sizeof(A_t));

typedef struct {
char c[3];____

} A_t_c;

typedef struct {
char a;_______
double b;_____
A_t_c *c_ptr;_
void (*fp)();_

} A_t;

A2

Virtual Address (VA)

Object Allocation

Multi-Dimensional Objects

Struct Definition

main.c

free

A1 A3
Object Deallocation & Reuse

Presenter
Presentation Notes
A natural question to ask is how do we handle multi-dimensional objects. 

These are objects that contain arrays or buffers.

The fact that multi-dimensional objects share the same base allocation address means that they will be using the same permutation meaning that the attacker may overflow from one internal buffer to another without being detected.



Multi-
Dimensional 
Objects

35

Presenter
Presentation Notes
To handle this scenario, … 



Multi-Dimensional Objects

36

typedef struct {
char a;_______
double b;_____
char c[3];____
void (*fp)();_

} A_t;

typedef struct {
char c[3];____

} A_t_c;

typedef struct {
char a;_______
double b;_____
A_t_c *c_ptr;_
void (*fp)();_

} A_t;

Buf2Ptr Transformation

Presenter
Presentation Notes
we separate these multi-dimensional objects into two distinct objects.



Multi-Dimensional Objects

37

typedef struct {
char a;_______
double b;_____
char c[3];____
void (*fp)();_

} A_t;

typedef struct {
char c[3];____

} A_t_c;

typedef struct {
char a;_______
double b;_____
A_t_c *c_ptr;_
void (*fp)();_

} A_t;

Buf2Ptr Transformation

Presenter
Presentation Notes
This separation allows us to reduce the problem of “intra-object” memory safety into an “inter-object” one. 

We call this transformation, Buf2Ptr, as intra-object buffers are now replaced with pointers that point to a new independent allocation. 




Multi-Dimensional Objects

38

A1 0xCAFE4000

Virtual Address (VA)

typedef struct {
char c[3];____

} A_t_c;

typedef struct {
char a;_______
double b;_____
A_t_c *c_ptr;_
void (*fp)();_

} A_t;

A B C ABC
A1_c 0xC0C040FF

Allocation & Permutation

Presenter
Presentation Notes
By separating the objects, we can independently permute each one just as we do for any other allocation.



39

Implementation

Presenter
Presentation Notes
Now that we understand the conceptual model behind SPAM, it’s time to dive into the implementation details.



Framework

40

SPAM

IRC
Code

Inst.
Pass

Src-to-Src
Transformation

Object
Files

Runtime
Library

Hardened
Binary

LLVM LinkerClang
C

Code

Presenter
Presentation Notes
Our compiler implementation is split into three parts: a source-to-source transformation pass in Clang, an Instrumentation Pass in IR, and a runtime library part of `compiler-rt`.



Framework

41

SPAM

IRC
Code

Inst.
Pass

Src-to-Src
Transformation

Object
Files

Runtime
Library

Hardened
Binary

LLVM LinkerClang
C

Code

Presenter
Presentation Notes
We’ll start by looking at the source-to-source transformation pass…or…



Buf2Ptr: Source-to-Source Transformation

42

struct Foo {
char buf[10];

};

struct Foo *f = malloc(
sizeof(struct Foo));

f->buf[7] = 'A’;

free(f);

// Promoted Type
struct Foo_buf {
char buf[10];

};
struct Foo {
struct Foo_buf *p_buf;

};

// Promoted Allocations
struct Foo *f = malloc(
sizeof(struct Foo));
f->p_buf = malloc(
sizeof(struct Foo_buf));

// Promoted Usages
f->p_buf->buf[7] = 'A’;

// Promoted Deallocations
free(f->p_buf);
free(f);

(a) Original (b) Transformed

Presenter
Presentation Notes
Buf2Ptr. 

It’s best explained through an example. On the left we have the original, non-transformed code, and on the right the result after the Buf2Ptr transformation has been applied.

We begin by promoting types. 

In this example, struct Foo. 

We split the struct to separate out the buffer and wrap it with its own type, Foo_buf. We then modify the original field in struct Foo to point to an object of type Foo_buf.



Buf2Ptr: Source-to-Source Transformation

43

struct Foo {
char buf[10];

};

struct Foo *f = malloc(
sizeof(struct Foo));

f->buf[7] = 'A’;

free(f);

// Promoted Type
struct Foo_buf {
char buf[10];

};
struct Foo {
struct Foo_buf *p_buf;

};

// Promoted Allocations
struct Foo *f = malloc(
sizeof(struct Foo));
f->p_buf = malloc(
sizeof(struct Foo_buf));

// Promoted Usages
f->p_buf->buf[7] = 'A’;

// Promoted Deallocations
free(f->p_buf);
free(f);

(a) Original (b) Transformed

Presenter
Presentation Notes
Changing the type means that any allocation that previously allocated struct Foo, will now need to be promoted as well. 
We allocate both struct Foo and struct Foo_buf updating the appropriate pointer.



Buf2Ptr: Source-to-Source Transformation

44

struct Foo {
char buf[10];

};

struct Foo *f = malloc(
sizeof(struct Foo));

f->buf[7] = 'A’;

free(f);

// Promoted Type
struct Foo_buf {
char buf[10];

};
struct Foo {
struct Foo_buf *p_buf;

};

// Promoted Allocations
struct Foo *f = malloc(
sizeof(struct Foo));
f->p_buf = malloc(
sizeof(struct Foo_buf));

// Promoted Usages
f->p_buf->buf[7] = 'A’;

// Promoted Deallocations
free(f->p_buf);
free(f);

(a) Original (b) Transformed

Presenter
Presentation Notes
Similarly, usages are also promoted. An additional pointer dereference is used due to the indirection.



Buf2Ptr: Source-to-Source Transformation

45

struct Foo {
char buf[10];

};

struct Foo *f = malloc(
sizeof(struct Foo));

f->buf[7] = 'A’;

free(f);

// Promoted Type
struct Foo_buf {
char buf[10];

};
struct Foo {
struct Foo_buf *p_buf;

};

// Promoted Allocations
struct Foo *f = malloc(
sizeof(struct Foo));
f->p_buf = malloc(
sizeof(struct Foo_buf));

// Promoted Usages
f->p_buf->buf[7] = 'A’;

// Promoted Deallocations
free(f->p_buf);
free(f);

(a) Original (b) Transformed

Presenter
Presentation Notes
Finally, we separately free struct Foo_buf and struct Foo as a result of the transformation.



Framework

46

SPAM

IRC
Code

Inst.
Pass

Src-to-Src
Transformation

Object
Files

Runtime
Library

Hardened
Binary

LLVM LinkerClang
C

Code

Presenter
Presentation Notes
Next, we’ll focus on the instrumentation pass & runtime library. 



Instrumentation & Runtime

47

#include <stdio.h>
#include <stdlib.h>

int main()
{

char *p = malloc(128);
*p = 'A';
printf("%c\n", *p);
return 0;

}

Presenter
Presentation Notes
The instrumentation is best understood with an example. We’ll start with this small C snippet. 



Instrumentation & Runtime

48

#include <stdio.h>
#include <stdlib.h>

int main()
{

char *p = malloc(128);
*p = 'A';
printf("%c\n", *p);
return 0;

}
Baseline Compilation

Flags: -O0

Presenter
Presentation Notes
We’ll then compile it without SPAM and take a look at the corresponding IR.



Instrumentation & Runtime

49

#include <stdio.h>
#include <stdlib.h>

int main()
{

char *p = malloc(128);
*p = 'A';
printf("%c\n", *p);
return 0;

}

define i32 @main() {
%ptr = call i8* @malloc(i64 128)

store i8 65, i8* %ptr, align 1

%load = load i8, i8* %ptr, align 1

%conv = sext i8 %load to i32
%print = call i32 (i8*, ...) @printf(i8*

getelementptr inbounds ([4 x
i8], [4 x i8]* @.str, i32 0, i32 0),
i32 %conv)

ret i32 0
}

Presenter
Presentation Notes
Even if you’re unfamiliar with IR, it should be pretty easy to see the correspondence of the compilation…you have your malloc, a store, a load, and the call to printf.



Instrumentation & Runtime

50

#include <stdio.h>
#include <stdlib.h>

int main()
{

char *p = malloc(128);
*p = 'A';
printf("%c\n", *p);
return 0;

}

define i32 @main() {
%ptr = call i8* @malloc(i64 128)

store i8 65, i8* %ptr, align 1

%load = load i8, i8* %ptr, align 1

%conv = sext i8 %load to i32
%print = call i32 (i8*, ...) @printf(i8*

getelementptr inbounds ([4 x
i8], [4 x i8]* @.str, i32 0, i32 0),
i32 %conv)

ret i32 0
}

SPAM Compile

Presenter
Presentation Notes
Now let’s compile this with SPAM and see what the IR looks like.



Instrumentation & Runtime

51

#include <stdio.h>
#include <stdlib.h>

int main()
{

char *p = malloc(128);
*p = 'A';
printf("%c\n", *p);
return 0;

}

define i32 @main() {
%ptr = call i8* @spam_malloc(i64 128)

%store_off = call i8* @spam_get_perm_offset(i8* %ptr, i8* %ptr)

store i8 65, i8* %store_off, align 1

%load_off = call i8* @spam_get_perm_offset(i8* %ptr, i8* %ptr)

%load = load i8, i8* %load_off, align 1

%conv = sext i8 %load to i32
%print = call i32 (i8*, ...) @printf(i8*

getelementptr inbounds ([4 x
i8], [4 x i8]* @.str, i32 0, i32 0),
i32 %conv)

ret i32 0
}

SPAM 
Runtime

Presenter
Presentation Notes
Highlighted in red are the key SPAM runtime functions.



Instrumentation & Runtime

52

#include <stdio.h>
#include <stdlib.h>

int main()
{

char *p = malloc(128);
*p = 'A';
printf("%c\n", *p);
return 0;

}

define i32 @main() {
%ptr = call i8* @spam_malloc(i64 128)

%store_off = call i8* @spam_get_perm_offset(i8* %ptr, i8* %ptr)

store i8 65, i8* %store_off, align 1

%load_off = call i8* @spam_get_perm_offset(i8* %ptr, i8* %ptr)

%load = load i8, i8* %load_off, align 1

%conv = sext i8 %load to i32
%print = call i32 (i8*, ...) @printf(i8*

getelementptr inbounds ([4 x
i8], [4 x i8]* @.str, i32 0, i32 0),
i32 %conv)

ret i32 0
}

To tag/untag Alias Number from pointer.

Presenter
Presentation Notes
First, we implement allocator wrappers which simply just handle the Alias Number computation and tags the resulting pointer returned from the underlying allocator. 
In other words, it does not add any significant overhead.



Instrumentation & Runtime

53

#include <stdio.h>
#include <stdlib.h>

int main()
{

char *p = malloc(128);
*p = 'A';
printf("%c\n", *p);
return 0;

}

define i32 @main() {
%ptr = call i8* @spam_malloc(i64 128)

%store_off = call i8* @spam_get_perm_offset(i8* %ptr, i8* %ptr)

store i8 65, i8* %store_off, align 1

%load_off = call i8* @spam_get_perm_offset(i8* %ptr, i8* %ptr)

%load = load i8, i8* %load_off, align 1

%conv = sext i8 %load to i32
%print = call i32 (i8*, ...) @printf(i8*

getelementptr inbounds ([4 x
i8], [4 x i8]* @.str, i32 0, i32 0),
i32 %conv)

ret i32 0
}

Returns pointer with calculated 
permuted offset.

Presenter
Presentation Notes
Second, is the permutation primitive, spam_get_perm_offset.
It takes a pointer and a base pointer (that is the pointer returned from the allocation). It then calculates the resulting address with the permutation applied.
spam_get_perm_offset is the primary source of overheads.



Instrumentation & Runtime

54

Global Support

void RegisterGlobal(void *Ptr)

For .data section hook into .ctor
to permute on program load.

Stack Support

void *RegisterStack(void *Ptr)

For variables passed by OS (e.g. argv) 
hook into main to permute on start.

Presenter
Presentation Notes
While the previous example, showed heap memory being instrumented…we also support global and stack memory.

The instrumentation for loads/stores with spam_get_perm_offset remains exactly the same. However, there are two additional components that we need.

For globals, specifically those in the .data section, we emit a RegisterGlobal call into the global constructors list to permute memory on program load. Those in the .bss section, which are zero-allocated, will be permuted normally when written to. 

For stack, similar to globals, we have a RegisterStack call that is emitted into the beginning of main to permute variables passed by the OS (namely argv).





55

Why SPAM?

Presenter
Presentation Notes
Now, let’s discuss the benefits that SPAM offers.



SPAM Benefits

Spatial 
Memory Safety

Temporal 
Memory Safety

Hardwar 
Side-Channel 

Resilience

Stateless

• Every object instance 
(allocation) is permuted 
independently.

• Overflows within an 
object (intra) are 
transformed.

Presenter
Presentation Notes
SPAM provides spatial memory safety as every object instance is permuted independently. 

Moreover, the multi-dimensional object transformation provides protection against intra-object overflows. 



SPAM Benefits

Spatial 
Memory Safety

Temporal 
Memory Safety

Stateless

Byte-granular protection!

Presenter
Presentation Notes
These two features enable SPAM to provide byte-granular spatial memory safety protection. 



SPAM Benefits

Spatial 
Memory Safety

Temporal 
Memory Safety

Hardware 
Side-Channel 

Resilience

Stateless

• Alias number introduces 
additional entropy when 
an address is reused.

Byte-granular protection!

Presenter
Presentation Notes
Temporal safety is achieved by the alias number construct, which introduces additional entropy when a memory region (or address) is reused.



SPAM Benefits

Spatial 
Memory Safety

Temporal 
Memory Safety

Hardware 
Side-Channel 

Resilience

Stateless

Byte-granular protection!

No need for quarantine!

Presenter
Presentation Notes
As a result, we do NOT have to quarantine recently freed memory and prevent the program from using it. 

Memory quarantining can significantly increase memory footprint for programs that allocate many objects with short lifecycles.



SPAM Benefits

Spatial 
Memory Safety

Temporal 
Memory Safety

Side-Channel & 
Fault Resilience

Stateless

• Data is permuted across 
the memory hierarchy.

Byte-granular protection!

No need for quarantine!

Presenter
Presentation Notes
A major benefit of SPAM over other memory safety techniques is that it provides side-channel and fault resilience. 

All memory is permuted across the memory hierarchy, making leakage through the cache, RowHammer or ColdBoot attacks much more difficult.



SPAM Benefits

Spatial 
Memory Safety

Temporal 
Memory Safety

Stateless

Byte-granular protection!

No need for quarantine!

Unified protection for SW 
& HW Vulns!

Side-Channel & 
Fault Resilience

Presenter
Presentation Notes
Thus, SPAM provides a unified defense against software AND hardware based vulnerabilities. 



SPAM Benefits

Spatial 
Memory Safety

Temporal 
Memory Safety

Stateless
• No opportunity for 

manipulation by an 
attacker.

Byte-granular protection!

No need for quarantine!

Unified protection for SW 
& HW Vulns!

Side-Channel & 
Fault Resilience

Presenter
Presentation Notes
Finally, the SPAM approach is stateless. It doesn’t require any metadata.
 
Thus, it makes the job of securing the implementation much simpler than other techniques that have a large Trusted Computing Base. 

------
This makes it so that there is little to no opportunity for an attacker to manipulate the security mechanism itself.



SPAM Benefits

Spatial 
Memory Safety

Temporal 
Memory Safety

Stateless

Byte-granular protection!

No need for quarantine!

Unified protection for SW 
& HW Vulns!

Support for 
multithreading!

Side-Channel & 
Fault Resilience

Presenter
Presentation Notes
Additionally, being stateless allows SPAM to support multithreading applications out of the box. 



64

Resilience to 
Common Exploits

Presenter
Presentation Notes
To put the security benefits in more concrete terms. Let's look at a handful of common exploits and how SPAM mitigates them.



Resilience to Common Exploits

65

Buffer A Buffer B

1
Cannot reliably 
corrupt memory.

Buffer 
Over-/Under-flows

Presenter
Presentation Notes
Here, we have a classic buffer overflow. 

We have two buffers side-by-side, A and B, and we want to overwrite B from a pointer in A. 



Resilience to Common Exploits

66

Buffer A Buffer B
Original:

Buffer A Buffer B

1
Cannot reliably 
corrupt memory.

Buffer 
Over-/Under-flows

Presenter
Presentation Notes
Under normal conditions, the write would happen linearly and thus reliably corrupt B.



Resilience to Common Exploits

67

Buffer A Buffer B
Original:

Buffer A Buffer B

Buffer A Buffer B
SPAM:

1
Cannot reliably 
corrupt memory.

Buffer 
Over-/Under-flows

Non-linear write
can trigger exception!

Presenter
Presentation Notes
With SPAM in place, the write actually becomes non linear, as the write to B would be done using the permutation for A. 

This non-linear write can land anywhere which can trigger an exception.



Resilience to Common Exploits

68

1
Cannot reliably 
corrupt memory.

Buffer 
Over-/Under-flows

2
Each instance 
permutated 
independently.

Use-after-free

Alias number provides multiple permutations.

Virtual AddressAlias Number

Presenter
Presentation Notes
Another very common exploit technique involves leveraging use-after-frees. 

Much like in the buffer overflow case, any pointer that points to this memory region would be using an incorrect permutation, as the alias number provides multiple permutations.



Resilience to Common Exploits

69

1
Cannot reliably 
corrupt memory.

Buffer 
Over-/Under-flows

2 Use-after-free 3
Speculative load uses a 
different permutation to 
access the permuted data.

Speculative Attacks

// mispredicted branch
if (i < sizeof(a)) {

secret = a[i];

// secret is leaked
val = b[64 * secret]; 

}

• Attacker will end up 
with an unpredictable 
value in secret due as 
the permutation 
depends on the address 
of a[i].

Unpredictable!

Each instance 
permutated 
independently.

Presenter
Presentation Notes
Finally, let's look at speculative execution attacks. The code snippet here is a minimal example of Spectre.
 
Normally, the load from a[i] to secret can be reliably accessed with an out of bound index i. 

However, with SPAM in place, the attacker will end up with an unpredictable value in secret as the permutation will depend on the address of a[i] effectively breaking the attack.



70

SPAM Meets Reality

Presenter
Presentation Notes
Now that we’ve established how SPAM works, let’s discuss a bit about how it deals with “real-world” code.



SPAM Meets Reality

71

Compatibility with Uninstrumented Code

SPAM
Permuted Domain

External
Unpermuted Domain

Presenter
Presentation Notes
SPAM requires a strict separation between application code and data from the permuted domain (on the left) and the external unpermuted domain (on the right). 

Otherwise, the loads and stores at either side of this boundary may inadvertently corrupt memory.

In order to remain compatible with uninstrumented code (such as non SPAM aware shared libraries), we must have a mechanism to reliably cross this gap.




SPAM Meets Reality

72

Compatibility with Uninstrumented Code

SPAM
Permuted Domain

External
Unpermuted Domain

#include <stdio.h>
#include <stdlib.h>

int main()
{

char *p = malloc(128);
*p = 'A';
printf("%c\n", *p);
return 0;

}

int printf(const char *fmt, ...) {
int err;

va_list ap;
va_start(ap, fmt);
err = _dvprintf(fmt, ap);
va_end(ap);

return err;
}

Presenter
Presentation Notes
Going back to our C snippet from before, the printf is an example of external uninstrumented code. 

Thus, it’s arguments would need to be properly handled.



SPAM Meets Reality

73

Compatibility with Uninstrumented Code

SPAM
Permuted Domain

External
Unpermuted Domain

Presenter
Presentation Notes
Two this end, we provide two primitives to allow for inter-operability with both domains.



SPAM Meets Reality

74

Compatibility with Uninstrumented Code

Other 
Memory

SPAM
Permuted Domain

External
Unpermuted Domain

Presenter
Presentation Notes
This allows for ONLY the necessary permuted data…



SPAM Meets Reality

75

Compatibility with Uninstrumented Code

Other 
Memory

SPAM
Permuted Domain

External
Unpermuted Domain

Presenter
Presentation Notes
to cross the boundary…



SPAM Meets Reality

76

Compatibility with Uninstrumented Code

void *Unpermute(void *Ptr)

Other 
Memory

SPAM
Permuted Domain

External
Unpermuted Domain

Presenter
Presentation Notes
where it is unpermuted…



SPAM Meets Reality

77

Compatibility with Uninstrumented Code

Other 
Memory

SPAM
Permuted Domain

External
Unpermuted Domain

Presenter
Presentation Notes
so it can be accessed by uninstrumented code.



SPAM Meets Reality

78

Compatibility with Uninstrumented Code

Other 
Memory

SPAM
Permuted Domain

External
Unpermuted Domain

Presenter
Presentation Notes
Similarly, in the opposite direction…



SPAM Meets Reality

79

Compatibility with Uninstrumented Code

void *Permute(void *Ptr)

Other 
Memory

SPAM
Permuted Domain

External
Unpermuted Domain

Presenter
Presentation Notes
We provide a Permute primitive to shuffle the memory…



SPAM Meets Reality

80

Compatibility with Uninstrumented Code

Other 
Memory

SPAM
Permuted Domain

External
Unpermuted Domain

Presenter
Presentation Notes
So that is accessible by SPAM instrumented code.



SPAM Meets Reality

81

Compatibility with Uninstrumented Code

Other 
Memory

Linked 
Memory

SPAM
Permuted Domain

External
Unpermuted Domain

Presenter
Presentation Notes
Additionally, if we have multiple chunks of data that are linked (such as structs that point to other structs), we recursively unpermute/permute them as necessary.



SPAM Meets Reality

82

Compatibility with Uninstrumented Code

int cmp (const void * a,
const void * b) {...}

int main() {
...
qsort(b, 10, 10, cmp);
...

}

void qsort(void *base,
size_t nitems,
size_t size,

int (*cmp)(const void *, const void*))
{...}

SPAM
Permuted Domain

External
Unpermuted Domain

Presenter
Presentation Notes
Now…because of this boundary, we also need to be aware of application code that may be called from either side via function pointers.




SPAM Meets Reality

83

Compatibility with Uninstrumented Code

int cmp (const void * a,
const void * b) {...}

int main() {
...
qsort(b, 10, 10, cmp);
...

}

void qsort(void *base,
size_t nitems,
size_t size,

int (*cmp)(const void *, const void*))
{...}

SPAM
Permuted Domain

External
Unpermuted Domain

Presenter
Presentation Notes
A good example of this is the qsort function, which takes a function pointer to a comparison function.



SPAM Meets Reality

84

Compatibility with Uninstrumented Code

int cmp (const void * a,
const void * b) {...}

int main() {
...
qsort(b, 10, 10, cmp);
...

}

void qsort(void *base,
size_t nitems,
size_t size,

int (*cmp)(const void *, const void*))
{...}

SPAM
Permuted Domain

External
Unpermuted Domain

Presenter
Presentation Notes
Our solution…is to take this comparison function…



SPAM Meets Reality

85

Compatibility with Uninstrumented Code

int main() {
...
qsort(b, 10, 10, cmp);
...

}

void qsort(void *base,
size_t nitems,
size_t size,

int (*cmp)(const void *, const void*))
{...}

int cmp (const void * a,
const void * b) {...}

SPAM
Permuted Domain

External
Unpermuted Domain

Presenter
Presentation Notes
and move it across the boundary by choosing not to instrument it so that it can thus reliably operate on unpermuted memory.



SPAM Meets Reality

86

Hardware Support

Accelerate Permutation!

Presenter
Presentation Notes
There are also a few other benefits to how SPAM is implemented.

SPAM can be built to rely on hardware support to boost its performance…

A simple hardware-based permutation network can save the hundreds of cycles that are currently wasted in the software-based shuffling algorithm. 



SPAM Meets Reality

87

Hardware Support

%store_off = call i8* @spam_get_perm_offset(i8* %ptr, i8* %ptr)

store i8 65, i8* %store_off, align 1

%load_off = call i8* @spam_get_perm_offset(i8* %ptr, i8* %ptr)

%load = load i8, i8* %load_off, align 1

Presenter
Presentation Notes
Additionally, merging SPAM within the ISA itself will help in decreasing the code size. 



SPAM Meets Reality

88

Hardware Support

%store_off = call i8* @spam_get_perm_offset(i8* %ptr, i8* %ptr)

store i8 65, i8* %store_off, align 1

%load_off = call i8* @spam_get_perm_offset(i8* %ptr, i8* %ptr)

%load = load i8, i8* %load_off, align 1

spam_store i8 65, i8* %ptr, align 1

%load = spam_load i8, i8* %ptr, align 1

Reduce resource 
pressure!

Presenter
Presentation Notes
By compressing, the spam_get_perm_offset into SPAM loads and stores, we avoid introducing unnecessary instruction cache pressure…………..



89

Other Mitigations

Presenter
Presentation Notes
There are a lot of great talks on memory safety at the conference this year. 

So we thought we’d briefly discuss how they relate to SPAM.



Other Mitigations

• ARM MTE
• Memory & pointers are tagged with colors.

90Source: ARM v8.5A - https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf

Presenter
Presentation Notes
ARM memory tagging (or MTE) is a new ISA extension, in which memory and pointers are tagged with colors. 

It provides spatial memory safety by matching the colors of the pointer and the accessed memory and throws an exception in case of a mismatch. 


https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf


Other Mitigations

• ARM MTE
• Memory & pointers are tagged with colors.

91

Limited set of colors. 

Source: ARM v8.5A - https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf

Presenter
Presentation Notes
However, due to a limited set of colors, ARM MTE has lower entropy against non-adjacent spatial overflows and use-after-frees compared to SPAM.  



https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf


Other Mitigations

• ARM MTE
• Memory & pointers are tagged with colors.

92

Vulnerable to intra-object 
& 

type confusion.

Source: ARM v8.5A - https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf

Presenter
Presentation Notes
Additionally, MTE is vulnerable to intra-object and type confusion violations. 

https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf


Other Mitigations

• ARM MTE
• Memory & pointers are tagged with colors.

• Checked C
• Adds new pointer and array types that are bounds checked.

93
Source: Elliott, Archibald Samuel, et al. "Checked C: Making C safe by extension." 2018 IEEE Cybersecurity Development (SecDev). IEEE, 2018.

Presenter
Presentation Notes
Checked C is an extension to C that adds new pointer and array types that are bounds checked to detect spatial memory safety violations.



Other Mitigations

• ARM MTE
• Memory & pointers are tagged with colors.

• Checked C
• Adds new pointer and array types that are bounds checked.

94

No temporal protection.

Source: Elliott, Archibald Samuel, et al. "Checked C: Making C safe by extension." 2018 IEEE Cybersecurity Development (SecDev). IEEE, 2018.

Presenter
Presentation Notes
To the best of our knowledge, Checked C has no temporal protection leaving it vulnerable to use-after-free attacks. 



Other Mitigations

95

No Hardware Side-Channel Resilience!

Presenter
Presentation Notes
The biggest key difference between these techniques and SPAM is that NONE can offer hardware side channel resiliency. 



96

Prototype Results

Presenter
Presentation Notes
Now, let’s quickly look at some preliminary results to see where the current software prototype stands in terms of performance.



97

Prototype Results

• C only subset of 
programs.

~2.11x overhead

2017

~1.4x overhead

• 2019 HTTP Archive Web 
Almanac workload.

((o) Duktape

~3.15x overhead

• Google Chrome’s 
Octane 2 
Benchmark Suite

~2.48x overhead

• Included Wolfcrypt 
benchmarks.

Average Performance Overheads

Presenter
Presentation Notes
We tested SPAM on a diverse set of C benchmarks including the standard SPEC 2017 benchmark suite, for which our LLVM-based prototype has a 2.1x slowdown.  

Moving on to more "real-world" applications, we evaluate Nginx, one of the most popular web servers, for which we see much better performance with SPAM on the order of 1.4x.

We also evaluate SPAM on duktape, an embeddable JS engine AND wolfssl, a popular lightweight cryptographic library. 

For all these benchmarks, we verified the correctness of our framework by comparing against the reference output. 



98

Unsupported 
Functionality

Presenter
Presentation Notes
Finally, lets have a Look on some unsupported functionality in our current prototype and how we plan to address them in the future. 



Unsupported Functionality

• Inline Assembly
• Can be handled with lifting or (un)permute 

primitives.

99

Presenter
Presentation Notes
SPAM is still not able to properly instrument inline assembly code. 

However, in the future, we anticipate that we can support inline assembly with the integration of a lifter.



Unsupported Functionality

• Inline Assembly
• Can be handled with lifting or (un)permute 

primitives.

• Variadic Functions
• Invoking functions with va_list as an 

argument (e.g. vsprintf) are unsupported.

100

void my_printf(const char *fmt, ...
) {

char buffer[256];

va_list ap;
va_start(ap, fmt);
vsprintf(buffer, fmt, ap);
va_end(ap);

}

Presenter
Presentation Notes
Variadic functions are fully supported in our current prototype … 



Unsupported Functionality

• Inline Assembly
• Can be handled with lifting or (un)permute 

primitives.

• Variadic Functions
• Invoking functions with va_list as an 

argument (e.g. vsprintf) are unsupported.

101

void my_printf(const char *fmt, ...
) {

char buffer[256];

va_list ap;
va_start(ap, fmt);
vsprintf(buffer, fmt, ap);
va_end(ap);

}

va_list is 
passed to external 

functions!

Presenter
Presentation Notes
… with the only exception being the invocation of external functions that use va_list as an argument (such as vsprintf for example).
 
So passing va_list to external functions is not currently supported by our prototype. 

However, va_list usage inside of instrumented code is fully supported.



SPAM (in a nutshell)
• Unified solution to multiple software and hardware memory security 

issues.

102

Presenter
Presentation Notes
This brings us to the end of our talk. 

Hopefully, we’ve shown you how SPAM provides a unified solution to multiple software and hardware memory security issues …



SPAM (in a nutshell)
• Unified solution to multiple software and hardware memory security 

issues.
 Key Features

Metadata-less: enabled by permuting based on allocation address and a salt.

103

Presenter
Presentation Notes
How it’s able to work without metadata by relying on the allocation address.




SPAM (in a nutshell)
• Unified solution to multiple software and hardware memory security 

issues.
 Key Features

Metadata-less: enabled by permuting based on allocation address and a salt.
Out-of-the-box compatibility with MT code: due to metadata-less nature.

104

Presenter
Presentation Notes
and how this in turn allows us to support multi-threaded code out of the box.



SPAM (in a nutshell)
• Unified solution to multiple software and hardware memory security 

issues.
 Key Features

Metadata-less: enabled by permuting based on allocation address and a salt.
Out-of-the-box compatibility with MT code: due to metadata-less nature.
Compatible with non-SPAM code: allows incremental adoption.

105

Presenter
Presentation Notes
We’ve also show you how SPAM achieves compatibility with non-SPAM code, potentially easing future adoption …



SPAM (in a nutshell)
• Unified solution to multiple software and hardware memory security 

issues.
 Key Features

Metadata-less: enabled by permuting based on allocation address and a salt.
Out-of-the-box compatibility with MT code: due to metadata-less nature.
Compatible with non-SPAM code: allows incremental adoption.
Suitable for HW acceleration: localized changes within the pipeline.

106

Presenter
Presentation Notes
And how there is a path forward to reducing overheads through hardware acceleration.



SPAM (in a nutshell)
• Unified solution to multiple software and hardware memory security 

issues.
 Key Features

Metadata-less: enabled by permuting based on allocation address and a salt.
Out-of-the-box compatibility with MT code: due to metadata-less nature.
Compatible with non-SPAM code: allows incremental adoption.
Suitable for HW acceleration: localized changes within the pipeline.

107

Future Work
• C++ support
• HW support (including 32-bit systems)

Presenter
Presentation Notes
Lastly, we want to share some news with regards to future work. 

C++ and hardware support are currently in development. If you’re interested in working with us please reach out.



SPAM (in a nutshell)
• Unified solution to multiple software and hardware memory security 

issues.
 Key Features

Metadata-less: enabled by permuting based on allocation address and a salt.
Out-of-the-box compatibility with MT code: due to metadata-less nature.
Compatible with non-SPAM code: allows incremental adoption.
Suitable for HW acceleration: localized changes within the pipeline.

108
Checkout our technical report on Arxiv!

https://arxiv.org/abs/2007.13808

Future Work
• C++ support
• HW support (including 32-bit systems)

Currently available 
upon request!

Presenter
Presentation Notes
Lastly, for other details that we didn’t have time to cover during the talk, we encourage you to checkout the full technical report on Arxiv.

Thank you!

https://arxiv.org/abs/2007.13808

	SPAM�Stateless Permutation of Application Memory
	About us
	Memory Safety is a serious problem!
	Slide Number 4
	Slide Number 5
	It’s easy to make mistakes
	Slide Number 7
	Slide Number 8
	Attackers Prefer Memory Safety Vulns
	À la carte solutions with additive overheads
	Slide Number 11
	Slide Number 12
	Overview
	Overview
	Overview
	Overview
	Overview
	Overview
	Object Allocation
	Object Allocation
	Object Allocation
	Object Allocation
	Object Allocation
	Object Allocation
	Overview
	Object Deallocation & Reuse
	Object Deallocation & Reuse
	Object Deallocation & Reuse
	Object Deallocation & Reuse
	Object Deallocation & Reuse
	Object Deallocation & Reuse
	Object Deallocation & Reuse
	Object Deallocation & Reuse
	Overview
	Multi-Dimensional Objects
	Multi-Dimensional Objects
	Multi-Dimensional Objects
	Multi-Dimensional Objects
	Slide Number 39
	Framework
	Framework
	Buf2Ptr: Source-to-Source Transformation
	Buf2Ptr: Source-to-Source Transformation
	Buf2Ptr: Source-to-Source Transformation
	Buf2Ptr: Source-to-Source Transformation
	Framework
	Instrumentation & Runtime
	Instrumentation & Runtime
	Instrumentation & Runtime
	Instrumentation & Runtime
	Instrumentation & Runtime
	Instrumentation & Runtime
	Instrumentation & Runtime
	Instrumentation & Runtime
	Why SPAM?
	SPAM Benefits
	SPAM Benefits
	SPAM Benefits
	SPAM Benefits
	SPAM Benefits
	SPAM Benefits
	SPAM Benefits
	SPAM Benefits
	Slide Number 64
	Resilience to Common Exploits
	Resilience to Common Exploits
	Resilience to Common Exploits
	Resilience to Common Exploits
	Resilience to Common Exploits
	Slide Number 70
	SPAM Meets Reality
	SPAM Meets Reality
	SPAM Meets Reality
	SPAM Meets Reality
	SPAM Meets Reality
	SPAM Meets Reality
	SPAM Meets Reality
	SPAM Meets Reality
	SPAM Meets Reality
	SPAM Meets Reality
	SPAM Meets Reality
	SPAM Meets Reality
	SPAM Meets Reality
	SPAM Meets Reality
	SPAM Meets Reality
	SPAM Meets Reality
	SPAM Meets Reality
	SPAM Meets Reality
	Slide Number 89
	Other Mitigations
	Other Mitigations
	Other Mitigations
	Other Mitigations
	Other Mitigations
	Other Mitigations
	Slide Number 96
	Slide Number 97
	Slide Number 98
	Unsupported Functionality
	Unsupported Functionality
	Unsupported Functionality
	SPAM (in a nutshell)
	SPAM (in a nutshell)
	SPAM (in a nutshell)
	SPAM (in a nutshell)
	SPAM (in a nutshell)
	SPAM (in a nutshell)
	SPAM (in a nutshell)

