
Securing Resource Constrained
Processors with Name Confusion

Mohamed Tarek Ibn Ziad, Miguel A. Arroyo, Evgeny
Manzhosov, Vasileios P. Kemerlis, and Simha Sethumadhavan

Columbia University
Brown University

09/21/2021

Presenter
Presentation Notes
Hello everyone,

I will be presenting the Phantom Name System, our implementation of a new concept we call Name Confusion Architectures.

This is joint work with Mohamed Tarek, myself Miguel Arroyo, Evgeny Manzhosov, Vasilis Kemerlis and Simha Sethumadhavan.

Embedded systems are everywhere!

2

Embedded
Systems

Presenter
Presentation Notes
Life saving medical devices, drones for package delivery, and robots for manufacturing all make up the world of embedded systems.
These computing devices run many of the infrastructure critical to many aspects of our daily lives...changing the way we interact with the world.

Why focus on software threats?
CPSs are predominantely written in memory unsafe languages.

3
Source: Embedded Insights Survey 2019

79

4

17

0

25

50

75

100

C/C++ Assembly Other

U
sa

ge
 (%

)

Presenter
Presentation Notes
Much like general-purpose software, 80% of embedded software is predominantly written in C/C++ due to strict performance and space requirements.
As many are already aware, these language suffer from various memory safety bugs.

Code Reuse Attacks

4

Instr 1 0x4000

Virtual Address Space

Instr 80 0x5000
…

Gadget1

Gadget2

Gadget3

Stack

Instr 85 0x5010

…

Presenter
Presentation Notes
The reason memory safety is important is that it tends to be the predominant source of vulnerabilities in programs.
Unfortunately, attackers are very efficient at exploiting these vulnerabilities.

The predominant attack vector are Code Reuse Attacks. Attackers must stitch together existing instructions in programs to execute arbitrary tasks.
Attackers must properly address these gadget chains, as they are called to avoid crashes and execute their malicious program.

Thus, everything hinges on an attacker’s ability to identify instructions.

Instr 1 0x4000

Virtual Address Space

Traditional Architecture
An instruction has a single name (or address).

5

Presenter
Presentation Notes
Now in traditional architectures, virtual memory addresses serve as references, or names,
to objects (i.e., instructions, data) during computation.

For instance, every instruction in a program is uniquely identified
(at run time) with a virtual memory address: the value in the
Program Counter (PC).

Typically, the virtual memory address
assigned to an instruction is kept constant and unique for the
life time of the program.

Enc(Instr 1) 0x4000

Virtual Address Space

Traditional Architecture
An instruction has a single name (or address).

6

Information hiding techniques (e.g. ISR)
randomize instruction encoding.

Presenter
Presentation Notes
To thwart the Code Reuse Attacks, or CRAs, Information Hiding techniques such as Instruction Set Randomization (ISR) [34],
[46], [53] randomize the encoding of instructions in memory, while also maintaining a unique instruction name per program
execution.

0x4000

Virtual Address Space

Traditional Architecture
An instruction has a single name (or address).

7

Metadata techniques (e.g. CFI) check
instructions during execution. Instr 1 IS VALID?

Presenter
Presentation Notes
In Metadata-based protections, such as Control-
Flow Integrity (CFI) [1], [12], the set of targets (names) that
can result from the execution of certain instructions (i.e., indirect
branches) are computed statically and checked during
execution.

Traditional Architecture
An instruction has a single name (or address).

8

0x4000

Virtual Address Space

Instr 1

0x4000Instr 1

Moving target techniques change
instruction names over time.

Presenter
Presentation Notes
In moving target techniques the names of instructions change over
time; however, at any given time, there is only one valid
name/address for an instruction.

Phantom Name System
A Name Confusion Architecture

9

Presenter
Presentation Notes
Our approach, the Phantom Name System takes a different approach introducing the concept of name confusion architectures.

Instr 1

Instr 1

Instr 1

Instr 1

Instr 1 0x4000

0x4000

0x5000

0x6000

0x7000

Phantom Address Space Virtual Address Space

Name Confusion Architecture
Multiple phantom addresses alias to an instruction.

10

Presenter
Presentation Notes
Now, name confusion is fundamentally different from other hardening paradigms.
A name confusion architecture assigns different addresses,
or names, to any contiguous group of instructions randomly at
runtime.

The core concept that makes this possible is the “Phantom Address Space”. Within the Phantom Address Space multiple “phantom addresses” are made to alias to an instruction in the virtual address space. Essentially, adding an extra layer of abstraction on-top of the fundamental concept of the virtual address space.

This idea is similar to how multiple virtual addresses can point to the same physical addresses, but with two key differences.
First, the N phantom addresses correspond to the same virtual address, not a physical address;
And second, the phantom addresses can be arbitrarily offset. They do not need to be page-aligned as required for data synonyms.

The first difference ensures that significant changes to the OS are not required, while the second is key to providing security.

Instr 1

Instr 1

Instr 1

Instr 1

Instr 1 0x4000

0x4000

0x5000

0x6000

0x7000

Phantom Address Space Virtual Address Space

Name Confusion Architecture
Multiple phantom addresses alias to an instruction.

11

An attacker must
guess which will be

executed!

Presenter
Presentation Notes
How can having multiple names improve security?

Given multiple names for an instruction, we define a security protocol
that specifies a random sequence of names to be used during
execution.

If the attacker does not follow the security protocol
by supplying an incorrect name, the exploited program will
crash and thus the attacker’s gadget chain will be stopped.

How are phantoms constructed?
Phantoms are logically displaced relative to the original program.

BBL A

BBL C

BBL A

BBL C

BBL A

BBL B

BBL C

BBL B

BBL B

δ Security
Shift

Δ
Domain

Offset

Phantom1

Phantom0

Phantom Address Space Virtual Address Space

BBL A

BBL B

BBL C

Physical Address Space 12

Presenter
Presentation Notes
So how exactly are these phantoms constructed?

The virtual and physical address mappings remain untouched, with no duplication that would increase code size.

How are phantoms constructed?
Phantoms are logically displaced relative to the original program.

BBL A

BBL C

BBL A

BBL C

BBL A

BBL B

BBL C

BBL B

BBL B

δ Security
Shift

Δ
Domain

Offset

Phantom1

Phantom0

Phantom Address Space Virtual Address Space

BBL A

BBL B

BBL C

Physical Address Space 13

Presenter
Presentation Notes
Phantoms are logically displaced (by the domain offset) relative to each other within the phantom address space.

How are phantoms constructed?
Phantoms are logically displaced relative to the original program.

BBL A

BBL C

BBL A

BBL C

BBL A

BBL B

BBL C

BBL B

BBL B

δ Security
Shift

Δ
Domain

Offset

Phantom1

Phantom0

Phantom Address Space Virtual Address Space

BBL A

BBL B

BBL C

Physical Address Space 14

Presenter
Presentation Notes
A second offset, we refer to as the security shift is used so that the various phantom copies are not perfectly overlapped.

As a result, the instruction offsets between basic blocks are thus distinct.

We then use these phantoms to diversify execution.

How does PNS diversify execution?
It diversifies the path of execution at every basic block.

Program Control Flow Graph

BBL AP0

main(...)

BBL AP1

exit()

diversify()True False

15

Presenter
Presentation Notes
On every control transfer we randomly pick between the many phantom copies to continue execution.

How does PNS diversify execution?
It diversifies the path of execution at every basic block.

Program Control Flow Graph

BBL AP0

main(...)

BBL AP1

exit()

diversify()True False

Phantoms are functionally
equivalent.

16

Presenter
Presentation Notes
As the phantoms are functionally equivalent, it doesn’t matter which one we pick.
However, since the addresses of these basic blocks are unique, this will force the attacker to gamble when constructing their exploit payload.

How does PNS diversify execution?
It diversifies the path of execution at every basic block.

Program Control Flow Graph

BBL AP0

main(...)

BBL AP1

exit()

diversify()True False
Thwarts many Code-Reuse

Attacks (CRAs).

17

Presenter
Presentation Notes
This diversification mechanism as we will see is well suited to thwarting code-reuse attacks or CRAs.

Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 71 (Add)
Inst 72 (Sub)
Inst 73 (Ret)

Inst 7 (Add)
Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

...

Inst 23 (Add)

Inst 9 (mov)

...

How does PNS protect against CRAs?
Phantoms force an adversary to guess the execution path.

Original

Normal Execution 18

Presenter
Presentation Notes
Let’s walk through a few examples of how normal & phantom execution work, both without and with a CRA taking place.

We start with normal baseline execution.

Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 71 (Add)
Inst 72 (Sub)
Inst 73 (Ret)

Inst 7 (Add)
Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

...

Inst 23 (Add)

Inst 9 (mov)

...

How does PNS protect against CRAs?
Phantoms force an adversary to guess the execution path.

1

Original

Normal Execution 19

Presenter
Presentation Notes
Let’s say we start at Instruction 10.

In step 1 Inst 10 changes the control-flow to a basic block starting with Inst 71.
The basic block executes...

Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 71 (Add)
Inst 72 (Sub)
Inst 73 (Ret)

Inst 7 (Add)
Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

...

Inst 23 (Add)

Inst 9 (mov)

...

How does PNS protect against CRAs?
Phantoms force an adversary to guess the execution path.

1

2

Original

Normal Execution 20

Presenter
Presentation Notes
And in step 2, the control flow is transferred back to the original target (Inst 11 via a ret instruction).

Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 71 (Add)
Inst 72 (Sub)
Inst 73 (Ret)

Inst 7 (Add)
Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

...

Inst 23 (Add)

Inst 9 (mov)

...

Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 71 (Add)
Inst 72 (Sub)
Inst 73 (Ret)

Inst 7 (Add)
Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

...

Inst 23 (Add)

Inst 9 (mov)

...

How does PNS protect against CRAs?
Phantoms force an adversary to guess the execution path.

1

2

Original Original

Normal Execution Execution with CRA
21

Presenter
Presentation Notes
Let’s look at it now during a code reuse attack…

Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 71 (Add)
Inst 72 (Sub)
Inst 73 (Ret)

Inst 7 (Add)
Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

...

Inst 23 (Add)

Inst 9 (mov)

...

Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 71 (Add)
Inst 72 (Sub)
Inst 73 (Ret)

Inst 7 (Add)
Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

...

Inst 23 (Add)

Inst 9 (mov)

...

How does PNS protect against CRAs?
Phantoms force an adversary to guess the execution path.

1

2

1

Original Original

Normal Execution Execution with CRA
22

Presenter
Presentation Notes
Step 1 remains the same...
But now, the attacker uses a memory safety vulnerability to overwrite the return address stored on the stack.

Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 71 (Add)
Inst 72 (Sub)
Inst 73 (Ret)

Inst 7 (Add)
Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

...

Inst 23 (Add)

Inst 9 (mov)

...

Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 71 (Add)
Inst 72 (Sub)
Inst 73 (Ret)

Inst 7 (Add)
Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

...

Inst 23 (Add)

Inst 9 (mov)

...

How does PNS protect against CRAs?
Phantoms force an adversary to guess the execution path.

1

2

1

2

Original Original

Normal Execution Execution with CRA
23

Presenter
Presentation Notes
This diverts the control flow at step 2 to go from the original Inst 11 to the attacker specified Inst 24 upon executing the return.

Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 71 (Add)
Inst 72 (Sub)
Inst 73 (Ret)

Inst 7 (Add)
Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

...

Inst 23 (Add)

Inst 9 (mov)

...

Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 71 (Add)
Inst 72 (Sub)
Inst 73 (Ret)

Inst 7 (Add)
Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

...

Inst 23 (Add)

Inst 9 (mov)

...

How does PNS protect against CRAs?
Phantoms force an adversary to guess the execution path.

1

2

1

2

3

Original Original

Normal Execution Execution with CRA
24

Presenter
Presentation Notes
This starts off their exploit “gadget chain” as its commonly referred, which they can use to perform arbitrary computations.

How does PNS protect against CRAs?
Phantoms force an adversary to guess the execution path.

Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 72 (Sub)
Inst 73 (Ret)

Inst 23 (Add)

...

Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

Inst 9 (mov)

Inst 71 (Add)

... Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 72 (Sub)
Inst 73 (Ret)

Inst 23 (Add)

Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

Inst 9 (mov)

Inst 71 (Add)

...

Inst 7 (Add)
Inst 7 (Add)δ

...

Security
Shift

Phantom 0 Phantom 1

Normal Execution 25

Presenter
Presentation Notes
Let’s now look at the normal execution with phantoms.

For simplicity we use a security shift, delta, of one instruction.
Remember that each control flow instruction arbitrarily chooses what phantom to execute from.

How does PNS protect against CRAs?
Phantoms force an adversary to guess the execution path.

Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 72 (Sub)
Inst 73 (Ret)

Inst 23 (Add)

...

Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

Inst 9 (mov)

Inst 71 (Add)

... Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 72 (Sub)
Inst 73 (Ret)

Inst 23 (Add)

Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

Inst 9 (mov)

Inst 71 (Add)

...

Inst 7 (Add)
Inst 7 (Add)δ

...

1

Phantom 0 Phantom 1

Normal Execution 26

Presenter
Presentation Notes
On the call in step 1, it decides to transfer execution from phantom 0 (on the left) to the phantom 1 (on the right).

How does PNS protect against CRAs?
Phantoms force an adversary to guess the execution path.

Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 72 (Sub)
Inst 73 (Ret)

Inst 23 (Add)

...

Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

Inst 9 (mov)

Inst 71 (Add)

... Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 72 (Sub)
Inst 73 (Ret)

Inst 23 (Add)

Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

Inst 9 (mov)

Inst 71 (Add)

...

Inst 7 (Add)
Inst 7 (Add)δ

...

1

Phantom 0 Phantom 1

Normal Execution 27

How does PNS protect against CRAs?
Phantoms force an adversary to guess the execution path.

Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 72 (Sub)
Inst 73 (Ret)

Inst 23 (Add)

...

Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

Inst 9 (mov)

Inst 71 (Add)

... Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 72 (Sub)
Inst 73 (Ret)

Inst 23 (Add)

Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

Inst 9 (mov)

Inst 71 (Add)

...

Inst 7 (Add)
Inst 7 (Add)δ

...

1

2

Phantom 0 Phantom 1

Normal Execution 28

Presenter
Presentation Notes
The return then transfers back.

How does PNS protect against CRAs?
Phantoms force an adversary to guess the execution path.

Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 72 (Sub)
Inst 73 (Ret)

Inst 23 (Add)

...

Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

Inst 9 (mov)

Inst 71 (Add)

... Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 72 (Sub)
Inst 73 (Ret)

Inst 23 (Add)

Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

Inst 9 (mov)

Inst 71 (Add)

...

Inst 7 (Add)
Inst 7 (Add)δ

...

Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 72 (Sub)
Inst 73 (Ret)

Inst 23 (Add)

...

Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

Inst 9 (mov)

Inst 71 (Add)

... Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 72 (Sub)
Inst 73 (Ret)

Inst 23 (Add)

Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

Inst 9 (mov)

Inst 71 (Add)

...

Inst 7 (Add)
Inst 7 (Add)δ

...WRONG

1

2

Phantom 0 Phantom 1 Phantom 0 Phantom 1

Normal Execution Execution with CRA 29

Presenter
Presentation Notes
Finally, let’s look at the code reuse attack with phantoms.

How does PNS protect against CRAs?
Phantoms force an adversary to guess the execution path.

Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 72 (Sub)
Inst 73 (Ret)

Inst 23 (Add)

...

Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

Inst 9 (mov)

Inst 71 (Add)

... Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 72 (Sub)
Inst 73 (Ret)

Inst 23 (Add)

Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

Inst 9 (mov)

Inst 71 (Add)

...

Inst 7 (Add)
Inst 7 (Add)δ

...

Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 72 (Sub)
Inst 73 (Ret)

Inst 23 (Add)

...

Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

Inst 9 (mov)

Inst 71 (Add)

... Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 72 (Sub)
Inst 73 (Ret)

Inst 23 (Add)

Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

Inst 9 (mov)

Inst 71 (Add)

...

Inst 7 (Add)
Inst 7 (Add)δ

...WRONG

1

2

1

Phantom 0 Phantom 1 Phantom 0 Phantom 1

Normal Execution Execution with CRA 30

Presenter
Presentation Notes
Step 1 remains the same...
Now, as the attacker cannot predict the phantom number in advance, they are forced to make a guess.

How does PNS protect against CRAs?
Phantoms force an adversary to guess the execution path.

Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 72 (Sub)
Inst 73 (Ret)

Inst 23 (Add)

...

Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

Inst 9 (mov)

Inst 71 (Add)

... Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 72 (Sub)
Inst 73 (Ret)

Inst 23 (Add)

Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

Inst 9 (mov)

Inst 71 (Add)

...

Inst 7 (Add)
Inst 7 (Add)δ

...

Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 72 (Sub)
Inst 73 (Ret)

Inst 23 (Add)

...

Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

Inst 9 (mov)

Inst 71 (Add)

... Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 72 (Sub)
Inst 73 (Ret)

Inst 23 (Add)

Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

Inst 9 (mov)

Inst 71 (Add)

...

Inst 7 (Add)
Inst 7 (Add)δ

...WRONG

1

2

1

2

Phantom 0 Phantom 1 Phantom 0 Phantom 1

Normal Execution Execution with CRA 31

Presenter
Presentation Notes
In this example, they supply an address from phantom 0 which is shifted by delta, the security shift.

How does PNS protect against CRAs?
Phantoms force an adversary to guess the execution path.

Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 72 (Sub)
Inst 73 (Ret)

Inst 23 (Add)

...

Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

Inst 9 (mov)

Inst 71 (Add)

... Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 72 (Sub)
Inst 73 (Ret)

Inst 23 (Add)

Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

Inst 9 (mov)

Inst 71 (Add)

...

Inst 7 (Add)
Inst 7 (Add)δ

...

Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 72 (Sub)
Inst 73 (Ret)

Inst 23 (Add)

...

Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

Inst 9 (mov)

Inst 71 (Add)

... Inst 20 (Add)
Inst 21 (Sub)
Inst 22 (Mul)

Inst 24 (Jump)

Inst 72 (Sub)
Inst 73 (Ret)

Inst 23 (Add)

Inst 8 (Sub)

Inst 10 (Call)

Inst 11 (Add)
Inst 12 (Jump)

Inst 9 (mov)

Inst 71 (Add)

...

Inst 7 (Add)
Inst 7 (Add)δ

...WRONG

1

2

1

2
2

Phantom 0 Phantom 1 Phantom 0 Phantom 1

Normal Execution Execution with CRA 32

Presenter
Presentation Notes
Thus, they will actually end up executing a WRONG instruction in step 2.

IN GENERAL, in this example if the attacker makes a wrong guess, they will execute one less (or one more) instruction compared to the desired gadget.

How does PNS precisely trap an attacker?
Code is instrumented with special instructions to throw an exception.

33

PhantomN

4: TRAP

6: Inst B2 (Jmp)

5: Inst B1 (Sub)

0: TRAP

6: Inst B2 (Jmp)

5: Inst B1 (Sub)

Phantom0 Phantom1

0: TRAP
1: Inst A1 (Mov)

2: Inst A2 (Add)

3: Inst A3 (Jmp)

1: Inst A1 (Mov)

2: Inst A2 (Add)

4: TRAP
3: Inst A3 (Jmp)

0: TRAP

6: Inst B2 (Jmp)

5: Inst B1 (Sub)

1: Inst A1 (Mov)

2: Inst A2 (Add)

4: TRAP
3: Inst A3 (Jmp)

...

δ

δ

Presenter
Presentation Notes
Now, To further limit the attack surface, we introduce what we call TRAP instructions. These instructions are inserted at the beginning of every basic block.

While PNS is enabled, the security shift, delta, will cause the TRAP instruction that exists in the beginning of a BBL in the original domain to appear at the end of the same BBL in the phantom domain.

Now because programs cannot execute TRAP instructions in normal conditions as there exist no control-ﬂow transfer to them…..

we provide the ability to catch attackers that guess the incorrect diversification when they land on the TRAP instruction while targeting BBL boundaries.

34

Random
Selection

How is PNS implemented?
We do minimal changes to the processor frontend.

Presenter
Presentation Notes
So, how is PNS implemented?

In this slide, we show a basic Pipeline for RISC V processor.
�PNS requires minimal changes to the micro-architecture.
Specifically, we introduce a Random Selection unit at the fetch stage.
This unit is responsible for randomly selecting which phantom to be used when a control flow instruction is fetched. ��

How was PNS evaluated?
We used the gem5 architectural simulator to validate correctness & performance.

PNS
1x

PNS+PtrEncLite
1.06x

0

0.5

1

1.5

gMean

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

SPEC CPU2017
35

Presenter
Presentation Notes
To evaluate PNS we used an architectural simulator to validate correctness and performance.

How was PNS evaluated?
We used the gem5 architectural simulator to validate correctness & performance.

PNS
1x

PNS+PtrEncLite
1.06x

0

0.5

1

1.5

gMean

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

SPEC CPU2017

Average slowdown < 6%!

36

Presenter
Presentation Notes
Overall we found no performance penalty for the basic PNS and a 6% slowdown when enabling TRAP instructions on SPEC CPU2017.

Limitations

37

Repeated Observation Attack
Running the same binary on a non-protected system can leak
the security shift of a return address.

Presenter
Presentation Notes
In terms of limitations, A potential JIT-like attack against PNS itself is what we refer to by repeated observation
attack.

An attacker, who can repeatedly read the architectural stack (e.g., by using a memory safety vulnerability), may record the phantomized return addresses and compare them to plaintext return addresses (i.e., return addresses that are obtained by running the same binary on a non-protected system).

While we acknowledge this hypothetical attack, it does have its own limitations that affect its practicality.

Please refer to the paper for more details.

Why is PNS well suited for constrained devices?
It brings efficient protection with minimal cost.

Minimal Performance Impact
PNS has minimal impact on workload execution.

Memory Savings
PNS cuts down on resource duplication associated with aliasing multiple
instructions.

38

Presenter
Presentation Notes
Finally, as we’ve shown, PNS requires minimal hardware modifications and has minimal performance impact at runtime.

This is primarily enabled by its significant memory savings by cutting down on resource duplication normally associated with aliasing multiple instructions.

Thanks for listening!

39

Find the paper here!

https://arxiv.org/pdf/1911.02038.pdfPhantom Name System

Presenter
Presentation Notes
With that we’d like to thank you for listening.

https://arxiv.org/pdf/1911.02038.pdf

	Securing Resource Constrained Processors with Name Confusion
	Embedded systems are everywhere!
	Why focus on software threats?� �CPSs are predominantely written in memory unsafe languages.
	Code Reuse Attacks
	Traditional Architecture��An instruction has a single name (or address).
	Traditional Architecture��An instruction has a single name (or address).
	Traditional Architecture��An instruction has a single name (or address).
	Traditional Architecture��An instruction has a single name (or address).
	Phantom Name System�A Name Confusion Architecture
	Name Confusion Architecture��Multiple phantom addresses alias to an instruction.
	Name Confusion Architecture��Multiple phantom addresses alias to an instruction.
	How are phantoms constructed?��Phantoms are logically displaced relative to the original program.
	How are phantoms constructed?��Phantoms are logically displaced relative to the original program.
	How are phantoms constructed?��Phantoms are logically displaced relative to the original program.
	How does PNS diversify execution?��It diversifies the path of execution at every basic block.
	How does PNS diversify execution?��It diversifies the path of execution at every basic block.
	How does PNS diversify execution?��It diversifies the path of execution at every basic block.
	How does PNS protect against CRAs?��Phantoms force an adversary to guess the execution path.
	How does PNS protect against CRAs?��Phantoms force an adversary to guess the execution path.
	How does PNS protect against CRAs?��Phantoms force an adversary to guess the execution path.
	How does PNS protect against CRAs?��Phantoms force an adversary to guess the execution path.
	How does PNS protect against CRAs?��Phantoms force an adversary to guess the execution path.
	How does PNS protect against CRAs?��Phantoms force an adversary to guess the execution path.
	How does PNS protect against CRAs?��Phantoms force an adversary to guess the execution path.
	How does PNS protect against CRAs?��Phantoms force an adversary to guess the execution path.
	How does PNS protect against CRAs?��Phantoms force an adversary to guess the execution path.
	How does PNS protect against CRAs?��Phantoms force an adversary to guess the execution path.
	How does PNS protect against CRAs?��Phantoms force an adversary to guess the execution path.
	How does PNS protect against CRAs?��Phantoms force an adversary to guess the execution path.
	How does PNS protect against CRAs?��Phantoms force an adversary to guess the execution path.
	How does PNS protect against CRAs?��Phantoms force an adversary to guess the execution path.
	How does PNS protect against CRAs?��Phantoms force an adversary to guess the execution path.
	How does PNS precisely trap an attacker?��Code is instrumented with special instructions to throw an exception.
	How is PNS implemented?��We do minimal changes to the processor frontend.
	How was PNS evaluated?� �We used the gem5 architectural simulator to validate correctness & performance.
	How was PNS evaluated?� �We used the gem5 architectural simulator to validate correctness & performance.
	Limitations
	Why is PNS well suited for constrained devices?� �It brings efficient protection with minimal cost.
	Thanks for listening!

