
Zero-Overhead Resilient Operation
Under

Pointer Integrity Attacks

Mohamed Tarek Ibn Ziad, Miguel Arroyo, Evgeny Manzhosov,
and Simha Sethumadhavan

Columbia University
06/16/2021

ZeRØ

Presenter
Presentation Notes
Hello everyone,

This is Mohamed Tarek and today I will be presenting ZeRO, A Zero overhead resilient operation under pointer integrity attacks.

ZeRO is a joint work with Miguel Arroyo, Evgeny Manzhosov and Simha Sethumadhavan.

2

Security?

Presenter
Presentation Notes
Have you ever wondered whether end-users really want security or not?

3

Security!

Presenter
Presentation Notes
The immediate answer is YES!

Most end users, including myself, want security …

Inefficient security inconveniences the user

Most end users want security,
but do not want the inconvenience of having it.

-1

4

Presenter
Presentation Notes
BUT they do not want the inconvenience of having it.

Inefficient security inconveniences the user

Slow Performance
User want a snappy experience and security tends to detract from it.

5

Presenter
Presentation Notes
They do not want their applications to be slowed down …

Inefficient security inconveniences the user

Slow Performance
User want a snappy experience and security tends to detract from it.

Energy Drain
Inefficient protections drain precious resources such as battery.

6

Presenter
Presentation Notes
their batteries to be drained …

Inefficient security inconveniences the user

Slow Performance
User want a snappy experience and security tends to detract from it.

System Stability
Users can’t be bothered with updates and patches.

Energy Drain
Inefficient protections drain precious resources such as battery.

7

Presenter
Presentation Notes
Or to be bothered with updates and crashes!

Inefficient security inconveniences the user

Slow Performance
User want a snappy experience and security tends to detract from it.

System Stability
Users can’t be bothered with updates and patches.

Energy Drain
Inefficient protections drain precious resources such as battery.

8

Great
Security
Ideas

Presenter
Presentation Notes
This is the unfortunate reality that sends novel security techniques with even minor performance overheads to the crypt of great security ideas.

To solve this dilemma, we present …

9

ZeRØ

Presenter
Presentation Notes
ZeRO, a technique to mitigate memory safety attacks with zero runtime overhead.

To be precise, ZeRO protects program pointers, which represent the main target for memory safety attacks.

Return Address Protection

10

CALL <Foo>

RET

STORE

MemoryProgram

Presenter
Presentation Notes
Let us start with a simple example.

This program has instructions on the left and memory contents on the right.

Return Address Protection

11

Return Address

CALL <Foo>

RET

STORE

MemoryProgram

Presenter
Presentation Notes
When a function is called, the return address (for example, program counter + 4) is typically pushed to memory.

Return Address Protection

12

Return Address

CALL <Foo>

RET

STORE

MemoryProgram

Presenter
Presentation Notes
Later on, when the function finishes execution, the RETURN instruction loads the return address from memory and jumps to it. In other words, RETURN address is a *code* pointer.

So, what can go wrong?

Return Address Protection

13

Return Address

CALL <Foo>

RET

STORE

MemoryProgram

Presenter
Presentation Notes
Well, attackers can use a buffer overflow to store their own address to the return address in memory.

Now, when the RET instruction is executed, the program will move to the attacker-controlled address instead of the original program counter + 4.

That is a well-known attack vector called ROP or return oriented programming.

Return Address Protection

14

Return Address

CALL <Foo>

RET

STORE

MemoryProgram

Presenter
Presentation Notes
To protect return addresses, we simply tag every return address upon a CALL and verify the tag upon return.

Return Address Protection

15

Return Address

CALL <Foo>

RET

STORE

MemoryProgram

Presenter
Presentation Notes
If a store instruction is used to overwrite a return address, ZeRØ will reject this instruction to protect the return address.

Return Address Protection

16

Return Address

CALL <Foo>

RET

STORE

MemoryProgram

ZeRØ uses advisory
exceptions to avoid crashing

when under attack.

Presenter
Presentation Notes
We also raise an advisory exception to notify the operating system, so it can log the attack for forensics or call the police, …
without actually crashing the running process.

This way we achieve resilient operation under pointier integrity attacks.

Code Pointer Integrity

17

Function Pointer

CPtrST

CPtrLD

...

MemoryProgram

Presenter
Presentation Notes
Similarly, ZeRØ protects function pointers by using special load and store instructions to access them.

For example, function pointers are written to memory by code pointer store instructions….

Code Pointer Integrity

18

Function Pointer

CPtrST

CPtrLD

...

MemoryProgram

Presenter
Presentation Notes
And are read using code pointer load instructions.

Code Pointer Integrity

19

Function Pointer

CPtrST

CPtrLD

MemoryProgram

STORE

Presenter
Presentation Notes
This way regular store instructions (from a buffer overflow for example) can NOT be used to corrupt function pointers.

Data Pointer Integrity

20

Data Pointer

DPtrST

DPtrLD

...

MemoryProgram

Works in the same way as
Code Pointer Integrity but

for data pointers!

Presenter
Presentation Notes
The same can also be applied to data pointers.

In other words, data pointers are only accessed by data Ptr load and data pointer store instructions.

ISA Extensions

21

ZeRØ

Presenter
Presentation Notes
Now let us summarize the ISA extensions required by ZeRO.

ZeRØ ISA Extensions

Return Address Integrity None. Relies on Call Return semantics.

22

Presenter
Presentation Notes
For return address integrity, no new instructions are needed

We simply change the internals of the traditional CALL and RETURN instructions.

As a result we can provide return address integrity even for legacy binaries!

ZeRØ ISA Extensions

Return Address Integrity None. Relies on Call Return semantics.

CPtrST/CPtrLD Address, ValueCode Pointer Integrity

Data Pointer Integrity DPtrST/DPtrLD Address, Value

23

Presenter
Presentation Notes
For code and data pointer integrity, ZeRO introduces special code & data pointer loads and stores to deal with different program pointers.

ZeRØ ISA Extensions

Return Address Integrity None. Relies on Call Return semantics.

CPtrST/CPtrLD Address, ValueCode Pointer Integrity

Data Pointer Integrity DPtrST/DPtrLD Address, Value

Same layout as
regular load &

stores!

24

Presenter
Presentation Notes
These instructions have the same layout of regular loads and stores (they just use different opcodes) to avoid adding any register pressure.

ZeRØ ISA Extensions

Return Address Integrity None. Relies on Call Return semantics.

CPtrST/CPtrLD Address, ValueCode Pointer Integrity

Data Pointer Integrity DPtrST/DPtrLD Address, Value

ClearMeta Address, Mask

25

Presenter
Presentation Notes
We also use a ClearMeta instruction.

ZeRØ ISA Extensions

Return Address Integrity None. Relies on Call Return semantics.

CPtrST/CPtrLD Address, ValueCode Pointer Integrity

Data Pointer Integrity DPtrST/DPtrLD Address, Value

ClearMeta Address, Mask Invoked on free
or delete.

26

Presenter
Presentation Notes
This instruction is invoked on free or delete to clear the metadata of freed memory before allocating the memory to different object.

27

How can we keep
track of ZeRØ bits?

Presenter
Presentation Notes
The question now is: How can ZeRØ keep track of these tag bits in memory?

In other words, how can ZeRØ efficiently identify if a memory word is a return address, code pointer, data pointer, or simply regular data?

Cache Line Formats

28

ZeRØ

Presenter
Presentation Notes
The key insight is to change how data is stored in cache lines

Cache Line Formats

29

Normal

0 1 3 6 72 4 5

Presenter
Presentation Notes
Let's start with an example.

We refer to a cache line as normal if it has no code or data pointers at all, like the one shown in the figure.

Cache Line Formats

30

A B C D E

Normal

Pointers

Presenter
Presentation Notes
Now, lets imagine a cache line with three program pointers.

Cache Line Formats

31

A B C D E

Normal

bit-vector

Pointers

Presenter
Presentation Notes
In this case, one simple way to identify those pointers is to use two bits of metadata for every normal word (or 8-bytes).

Cache Line Formats

32

bit-vector
Type Bits

Return address 01

Format Encoding Table

Pointers

A B C D E

Normal

Presenter
Presentation Notes
If the memory word is a return address, we set its corresponding metadata bits to 01,

Cache Line Formats

33

bit-vector
Type Bits

Return address 01
Function pointer 10

Format Encoding Table

Pointers

A B C D E

Normal

Presenter
Presentation Notes
if it is a function pointer, we set the metadata bits to 10.

Cache Line Formats

34

bit-vector
Type Bits

Return address 01
Function pointer 10
Data pointer 11

Format Encoding Table

Pointers

A B C D E

Normal

Presenter
Presentation Notes
And we set the bits to 11 to mark data pointers.

Cache Line Formats

35

bit-vector
Type Bits
Regular data 00
Return address 01
Function pointer 10
Data pointer 11

Format Encoding Table

Pointers

A B C D E

Normal

Presenter
Presentation Notes
Finally we use 00 to mark regular non-pointer data.

Of course, all these "state assignments" are arbitrary, and you can use a different one if you want.

This is called BitVector format and It has the benefit of fast lookup, however ...

Cache Line Formats

36

bit-vector
Type Bits
Regular data 00
Return address 01
Function pointer 10
Data pointer 11

Format Encoding Table

Pointers

A B C D E

Normal

This introduces a
3.125% area overhead.

Presenter
Presentation Notes
..., it introduces 3.125% area overhead in the cache.

Cache Line Formats

37

bit-vector

Using a bit-vector throughout the
memory hierarchy is inefficient!

Presenter
Presentation Notes
The area overheads of the bit-vector means that it is inefficient to use throughout the memory hierarchy.

So what do we do elsewhere?

Cache Line Formats

38

In ZeRØ, we encode metadata
within unused pointer bits.

Address BitsUnused Bits

64-bit Pointer

048 4763

Presenter
Presentation Notes
In ZeRØ, we store metadata about the program pointers within the pointers themselves!

This is feasible on 64-bit systems as the top 16-bit of all pointers are set to zero anyways.

Encoded

Cache Line Formats

39

A B C D E

Normal

A B C D E

Pointers

Header

In ZeRØ, we encode metadata
within unused pointer bits.

Presenter
Presentation Notes
We simply re-organize the cacheline by first compressing the regular data in one part of the cache line.
Then, we use the other part of the cache line as a header, IN WHICH, we store the addresses of the program pointers using some special encoding.

Cache Line Formats

40

A B C D E

Normal

A B C D EY

Has
Pointers?

Header

Pointers

In ZeRØ, we encode metadata
within unused pointer bits.

Encoded

Presenter
Presentation Notes
In order to disambiguate between the specially encoded cache lines and the normal ones, we extend each and every cache line with an additional bit.

This bit is set to one for the encoded cache lines...

Pointers

Cache Line Formats

41

0 1 3 6 7

Normal

2 4 5

A B C D E

Normal

A B C D E

0 1 3 6 72 4 5

Normal

Y

Has
Pointers?

Header

In ZeRØ, we encode metadata
within unused pointer bits.

N

Has
Pointers?

Encoded

Presenter
Presentation Notes
And is set to zero for non-encoded ones.

Pointers

In ZeRØ, we encode metadata
within unused pointer bits.

Cache Line Formats

42

0 1 3 6 7

Normal

2 4 5

A B C D E

Normal

A B C D EHeaderY

Has
Pointers?

0 1 3 6 72 4 5N

Has
Pointers?

Extra bit adds 0.2%
area overhead.

Normal

Encoded

Presenter
Presentation Notes
This way we reduce the area overheads to just 0.2%.

The question now is: how do we construct this special header?

Pointers

Cache Line Formats

43

0 1 3 6 7

Normal

2 4 5

A B C D E

Normal

A B C D EHeaderY

Has
Pointers?

0 1 3 6 72 4 5N

Has
Pointers? Normal

Encoded

A novel variant
of

Califorms

Practical Byte-Granular Memory Blacklisting using Califorms MICRO 2019

Presenter
Presentation Notes
We use a different variant of Califorms for enforcing pointer integrity rules instead of blocking access to program dead bytes.

Now let me describe to you how to build the "header" for Zero step-by-step.

https://doi.org/10.1145/3352460.3358299

Cache Line Formats

44

0 1 3 6 72 4 5

Presenter
Presentation Notes
First, lets assume we have a cache line with no pointers at all,

Cache Line Formats

45

0 1 3 6 72 4 5

8-byte chunk

Presenter
Presentation Notes
Each block in this cacheline represents an eight-byte chunk of data.

Cache Line Formats

46

0 1 3 6 72 4 5

8-byte chunk

0 1 3 6 72 4 5

Presenter
Presentation Notes
To distinguish it from another cache line that has one data pointer …

Cache Line Formats

47

0 1 3 6 72 4 5

8-byte chunk

0 1 3 6 72 4 5

Has
Pointers?

N

Y

Presenter
Presentation Notes
We use one extra bit, as we showed before.

That is easy. Lets make it a bit harder. How can we know the exact location of the pointer without having to scan the entire cache line?

Well, we can write it down in a separate metadata but that is costly.

Cache Line Formats

48

0 1 3 6 72 4 5

8-byte chunk

0 1 3 6 72 4 5

Has
Pointers?

N

Y010 11

Presenter
Presentation Notes
So, Let us just write the data pointer location (which is 010 in binary) and its type (11) in the first 6-bits of the cache line.

The question now is: What are we going to do with the original contents of this first 6-bits?

Cache Line Formats

49

0 1 3 6 72 4 5

8-byte chunk

0 1 3 6 72 4 5

Has
Pointers?

N

Y010 11

Presenter
Presentation Notes
Simple. Recall that in 64-bit architectures, the upper 16 bits of the virtual address are not used. So we move the metadata to the data pointer.

We can easily revert that later as we have the address stored in a known location.

Cache Line Formats

50

0 1 3 6 72 4 5

8-byte chunk

0 1 3 6 72 4 5

Has
Pointers?

N

Y0 010 11

Presenter
Presentation Notes
Finally, lets set the very first bit to 0 to mark this case.

Cache Line Formats

51

0 1 3 6 72 4 5

8-byte chunk

0 1 3 6 72 4 5

Has
Pointers?

N

Y0 010 11

Header
Size?

6 bits

Presenter
Presentation Notes
And now, case is closed for this line. We have no more spare bits to use in our header, which is 6-bits in size.

Cache Line Formats

52

0 1 3 6 72 4 5

8-byte chunk

0 1 3 6 72 4 5

Has
Pointers?

N

Y0 010 11

Header
Size?

6 bits

0 1 3 6 72 4 5 Y

Presenter
Presentation Notes
But what if we have two data pointers in our cacheline?

Cache Line Formats

53

0 1 3 6 72 4 5

8-byte chunk

0 1 3 6 72 4 5

Has
Pointers?

N

Y0 010 11

Header
Size?

6 bits

0 1 3 6 72 4 5 Y010 11 101 1112 bits

Presenter
Presentation Notes
Well, we can reuse the old trick again. Two pointers means the header can now enjoy the first 12-bits, in which we will store the offset and type of the two pointers.

Cache Line Formats

54

0 1 3 6 72 4 5

8-byte chunk

0 1 3 6 72 4 5

Has
Pointers?

N

Y0 010 11

Header
Size?

6 bits

0 1 3 6 72 4 5 Y010 1110 101 1112 bits

Presenter
Presentation Notes
And to distinguish this case from others, lets give it a 10 encoding.

Cache Line Formats

55

0 1 3 6 72 4 5

8-byte chunk

0 1 3 6 72 4 5

Has
Pointers?

N

Y0 010 11

Header
Size?

6 bits

0 1 3 6 72 4 5 Y010 1110 101 1112 bits

Presenter
Presentation Notes
Then we can safely move the original contents of the first 12-bits to the upper bits of the two pointers.

Cache Line Formats

56

0 1 3 6 72 4 5

8-byte chunk

0 1 3 6 72 4 5

Has
Pointers?

N

Y0 010 11

Header
Size?

6 bits

0 1 3 6 72 4 5 Y010 1110 101 1112 bits

0 1 3 6 72 4 5 Y

Presenter
Presentation Notes
Next, if we have 3 pointers of different types in our cacheline,

We can do the exact same trick, but now we have …

Cache Line Formats

57

0 1 3 6 72 4 5

8-byte chunk

0 1 3 6 72 4 5

Has
Pointers?

N

Y0 010 11

Header
Size?

6 bits

0 1 3 6 72 4 5 Y010 1110 101 1112 bits

0 1 3 6 72 4 5 Y18 bits

Presenter
Presentation Notes
18-bits header!

So lets simply divide it into two parts.

Cache Line Formats

58

0 1 3 6 72 4 5

8-byte chunk

0 1 3 6 72 4 5

Has
Pointers?

N

Y0 010 11

Header
Size?

6 bits

0 1 3 6 72 4 5 Y010 1110 101 1112 bits

0 1 3 6 72 4 5 Y18 bits 11

Presenter
Presentation Notes
In the first two bits we will store a unique encoding (which is 11),

Cache Line Formats

59

0 1 3 6 72 4 5

8-byte chunk

0 1 3 6 72 4 5

Has
Pointers?

N

Y0 010 11

Header
Size?

6 bits

0 1 3 6 72 4 5 Y010 1110 101 1112 bits

0 1 3 6 72 4 5 Y18 bits 11

Presenter
Presentation Notes
And in the adjacent 16-bits we will store the entire bit vector that encodes the state of each eight byte chunk in the cache line.

Cache Line Formats

60

0 1 3 6 72 4 5

8-byte chunk

0 1 3 6 72 4 5

Has
Pointers?

N

Y0 010 11

Header
Size?

6 bits

0 1 3 6 72 4 5 Y010 1110 101 1112 bits

0 1 3 6 72 4 5 Y18 bits 11 11 11 10

Presenter
Presentation Notes
So we start with the types of our 3 pointers …

Cache Line Formats

61

0 1 3 6 72 4 5

8-byte chunk

0 1 3 6 72 4 5

Has
Pointers?

N

Y0 010 11

Header
Size?

6 bits

0 1 3 6 72 4 5 Y010 1110 101 1112 bits

0 1 3 6 72 4 5 Y18 bits 11 00 00 11 00 00 11 00 10

Presenter
Presentation Notes
Followed by the types of the non-pointer data

Cache Line Formats

62

0 1 3 6 72 4 5

8-byte chunk

0 1 3 6 72 4 5

Has
Pointers?

N

Y0 010 11

Header
Size?

6 bits

0 1 3 6 72 4 5 Y010 1110 101 1112 bits

0 1 3 6 72 4 5 Y18 bits 11 00 00 11 00 00 11 00 10

Presenter
Presentation Notes
Again this header will be stored in the first 18-bits of the cacheline ...

Cache Line Formats

63

0 1 3 6 72 4 5

8-byte chunk

0 1 3 6 72 4 5

Has
Pointers?

N

Y0 010 11

Header
Size?

6 bits

0 1 3 6 72 4 5 Y010 1110 101 1112 bits

0 1 3 6 72 4 5 Y18 bits 11 00 00 11 00 00 11 00 10

Presenter
Presentation Notes
so the original contents of these 18-bits will be moved to the upper bits of the first 3 pointers.

That means ZeRO only uses 6-bits from each pointer for encoding the metadata.

The rest of the upper pointer bits can be used to mitigate pointer confusion attack, which you can read more about in the paper.

Next, Miguel will walk you through the hardware design of ZeRO and its performance and security guarantees.

Microarchitectural
Overview

64

ZeRØ

Presenter
Presentation Notes
Hello everyone!

I am [Miguel Arroyo] and I’ll be host during the second part of our talk.

Now that we have a good understanding on how ZeRO works
Let’s discuss the hardware changes that are needed for implementing ZeRO.

Microarchitectural Overview

65

CPU L1-D L2 DRAMC
C

Presenter
Presentation Notes
ZeRØ is integrated into the microarchitecture with minimal changes.

Microarchitectural Overview

66

...

Bit-vector Format

151413120 1 2 3 4 5

CPU L1-D L2 DRAMC
C

Presenter
Presentation Notes
In the L1 cache, we use bitvector format to guarantee fast lookup resulting in a 3.125% memory overhead. (Remember? that's the one with two metadata bits per every 8 bytes)

Microarchitectural Overview

67

Bit-vector 1-bit Format

CPU L1-D L2 DRAMC
C

Presenter
Presentation Notes
We use converters to switch between our cache line formats at the L1/L2 interface.

Microarchitectural Overview

68

......

Data1b

CPU L1-D L2 DRAMC
C

Presenter
Presentation Notes
Then for L2 cache and beyond, we only add one metadata bit per the whole cache line; resulting in 0.2% memory overhead.

Microarchitectural Overview

69

CPU L1-D L2 DRAMC
C

DataECC

Pr
ot

ec
te

d
Bi

ts

Presenter
Presentation Notes
For main memory, this 1-bit can be stored in ECC bits if available ...

Microarchitectural Overview

70

Data

...

Protected Bits

CPU L1-D L2 DRAMC
C

Presenter
Presentation Notes
or we can store the metadata bits in a disjoint memory region in DRAM.

As the size of L1 cache is small compared to L2 and main memory, the overall memory overhead is dominated by the 0.2%.

Performance

71

ZeRØ

Presenter
Presentation Notes
Now let us take about ZeRO’s performance guarantees and how it compares to related work.

ZeRØ Performance Overheads

72

Hardware Modifications

Presenter
Presentation Notes
Performance costs are mainly attributed to two sources:

The first is the hardware modifications that are needed to implement ZeRO.

ZeRØ Performance Overheads

73

Hardware Modifications
Our hardware measurements show minimal latency/area/power
overheads.

Presenter
Presentation Notes
The results of our VLSI implementation showed that our hardware modifications have no impact on the cache access latency and can be totally hidden within the pipeline.

ZeRØ Performance Overheads

74

Hardware Modifications
Our hardware measurements show minimal latency/area/power
overheads.

Software Modifications

Presenter
Presentation Notes
The second source of overheads comes from the instructions we use to handle program pointers.

ZeRØ Performance Overheads

75

Hardware Modifications
Our hardware measurements show minimal latency/area/power
overheads.

Software Modifications
• Our special load/stores do not change the binary size.

Presenter
Presentation Notes
At the software-level, ZeRO’s special load and store instructions use the same number of registers as regular loads and stores, basically introducing no changes to the binary size.

ZeRØ Performance Overheads

76

Hardware Modifications
Our hardware measurements show minimal latency/area/power
overheads.

Software Modifications
• Our special load/stores do not change the binary size.
• The ClearMeta instructions are only called on memory

deallocation.

Presenter
Presentation Notes
The only exception is the ClearMeta instructions, which are used to clear the metadata bits upon object deallocation.

Performance Results (x86_64)

77

Experimental Setup
We use emulate ZeRØ on x86_64 by modifying LLVM to emit
new instructions.

• ClearMeta is emulated using dummy stores.

Presenter
Presentation Notes
For emulating the effect of these ClearMeta instructions, we use a compiler pass to insert dummy store instructions that write some value to the corresponding upper pointer bits in the cache line.

All our experiments are run on real x86_64 machine.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
or

m
. P

er
f.

ZeRØ

Performance Results (x86_64)

78

0.80

0.85

0.90

0.95

1.00

1.05

gMean

N
or

m
. P

er
f. 0%

Presenter
Presentation Notes
As ClearMeta instructions are uncommon, the performance overheads of adding ZeRO to the SPEC 2017 benchmark suite are (true to its name) 0% on average, as shown in the top figure.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

N
or

m
. P

er
f.

PAC-FPtr ZeRØ

Performance Results (x86_64)

79

0.80

0.85

0.90

0.95

1.00

1.05

gMean

N
or

m
. P

er
f.

3%

Presenter
Presentation Notes
ARM pointer authentication (or PAC) which is now found in iPhones, is the closest commercial competitor, and provides strictly weaker guarantees than ZeRO.

We emulate the performance overheads of ARM PAC for protecting function pointers in memory by using dummy instructions on an x86_64 machine. The average slowdowns in this case is 3%.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

N
or

m
. P

er
f.

PAC-FPtr PAC-RET ZeRØ

Performance Results (x86_64)

80

0.80

0.85

0.90

0.95

1.00

1.05

1.10

gMean

N
or

m
. P

er
f.

6%

Presenter
Presentation Notes
Using the ARM technique to protect the more common return addresses incurs 6% runtime overheads on average.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

N
or

m
. P

er
f.

PAC-FPtr PAC-RET PAC-Full ZeRØ

Performance Results (x86_64)

81

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

gMean

N
or

m
. P

er
f.

14%

Presenter
Presentation Notes
Whereas applying ARM PAC to its full extent to protect all code and data pointers increases its overheads to 14% on average.

Performance Results (x86_64)

82

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

gMean

N
or

m
. P

er
f.

14%
PAC’s overheads are attributed to the extra QARMA
encryption invocations upon pointer:

• loads/stores
• usages

Presenter
Presentation Notes
Practically speaking, the main source of runtime overheads of PAC is the extra invocations of the crypto operations for each pointer.

Every time a pointer is stored to memory, a hash should be computed using QARMA and stored in the pointer upper bits.

When the pointer is loaded from memory, a new hash is computed and compared against the stored one.

As ZeRO doesn’t require any crypto operations …

Performance Results (x86_64)

83

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

gMean

N
or

m
. P

er
f.

14%
ZeRØ reduces the average runtime overheads of

pointer integrity from 14% to 0%!
0%

Presenter
Presentation Notes
It reduces the average runtime overheads of pointer integrity from 14% (in case of ARM PAC) to 0%.

ZeRØ does not compromise on security

84

No Pointer Manipulation
Protects against all known pointer manipulation attacks
(e.g. ROP, JOP/COP, COOP, DOP).

Presenter
Presentation Notes
This native performance does not compromise on security.

ZeRO still protects against all known pointer manipulation attacks, including ROP, JOP/COP, COOP, and the more recent data oriented programming attacks, DOP.

Handling Security Violations

85

Advisory Exceptions
• Skip faulty instructions.
• Do NOT crash the running process.

Presenter
Presentation Notes
If any pointer manipulation operation is detected, we skip the faulty instruction without crashing the running process.

Instead, we raise an advisory exception to notify the operating system or the system admin of the violation.

This way we achieve resilient operation under pointer integrity attacks.

Handling Security Violations

86

Advisory Exceptions
• Skip faulty instructions.
• Do NOT crash the running process.

Permit List
• Initialized during program startup

Presenter
Presentation Notes
For certain cases, it might be desirable to suppress exceptions for certain functions or libraries.

That’s why we use a hardware-based permit list that is initialized during program startup with the address range of the functions that needs to be permit-listed.

Handling Security Violations

87

Advisory Exceptions
• Skip faulty instructions.
• Do NOT crash the running process.

Permit List
• Initialized during program startup
• Avoid false alarms for non-type aware functions (e.g., memcpy

and memmove)

Presenter
Presentation Notes
This simple technique allows ZeRO to avoid raising false alarms for non-type aware functions such as memcpy and memmove.

The question now is: How does ZeRO handle third party code?

Handling Third Party Code

88

We can pick from the following options:

Presenter
Presentation Notes
Well we can pick from the following options.

Handling Third Party Code

89

Compile with ZeRØ
Compile third party code with ZeRØ support.

We can pick from the following options:

Presenter
Presentation Notes
One can either choose to compile third party libraries with ZeRO to enjoy maximum security protection.

Handling Third Party Code

90

Add to Permit List
Add to a permit list during program initialization.

Compile with ZeRØ
Compile third party code with ZeRØ support.

We can pick from the following options:

Presenter
Presentation Notes
Alternatively, If third-party code is not compiled with ZeRO, we can simply add the address range of such code to the permit list during program initialization or…

Handling Third Party Code

91

Add to Permit List
Add to a permit list during program initialization.

Invoke ClearMeta
ClearMeta is inserted before passing pointers to
external libraries.

Compile with ZeRØ
Compile third party code with ZeRØ support.

We can pick from the following options:

Presenter
Presentation Notes
clear the metadata bits before passing any pointers externally to avoid raising false alarms.

Limitations

92

ZeRØ

Presenter
Presentation Notes
In terms of limitations, …

Limitations

93

Non-pointer Data Corruption
These attacks require a full memory safety solution.

Presenter
Presentation Notes
ZeRO does not protect against non-pointer data corruption attacks at the moment.

Those attacks require a full memory safety solution.

Limitations

94

Non-pointer Data Corruption
These attacks require a full memory safety solution.

Full Memory Safety
No-FAT is well suited for cloud/server and end-user deployments.

Checkout our paper & talk!
https://isca21.arroyo.me

No
FAT

Presenter
Presentation Notes
So please checkout our other ISCA paper, No-FAT, which provides low overhead memory safety checks that works against pointer and non-pointer attacks.

https://isca21.arroyo.me/

An efficient pointer integrity mechanism

95

An ideal candidate for end-user deployment.

 Easy to Implement
No Runtime Overheads
Offers Robust SecurityZeRØ

Presenter
Presentation Notes
In a nutshell, ZeRO provides an efficient pointer integrity mechanism, which is easy to implement, has no runtime overheads, and offers robust security.

Thus, it is an ideal candidate for end-user deployment.

An efficient pointer integrity mechanism

96

An ideal candidate for end-user deployment.

 Easy to Implement
No Runtime Overheads
Offers Robust Security

A drop-in replacement for ARM PAC

ZeRØ

Presenter
Presentation Notes
And it can serve as a drop in replacement for ARM PAC with better guarantees and with ZERO overhead.
�Thank you for listening. Please reach out if you have any questions!

	Zero-Overhead Resilient Operation �Under �Pointer Integrity Attacks
	Slide Number 2
	Slide Number 3
	Inefficient security inconveniences the user
	Inefficient security inconveniences the user
	Inefficient security inconveniences the user
	Inefficient security inconveniences the user
	Inefficient security inconveniences the user
	Slide Number 9
	Return Address Protection
	Return Address Protection
	Return Address Protection
	Return Address Protection
	Return Address Protection
	Return Address Protection
	Return Address Protection
	Code Pointer Integrity
	Code Pointer Integrity
	Code Pointer Integrity
	Data Pointer Integrity
	ISA Extensions
	ZeRØ ISA Extensions
	ZeRØ ISA Extensions
	ZeRØ ISA Extensions
	ZeRØ ISA Extensions
	ZeRØ ISA Extensions
	Slide Number 27
	Cache Line Formats
	Cache Line Formats
	Cache Line Formats
	Cache Line Formats
	Cache Line Formats
	Cache Line Formats
	Cache Line Formats
	Cache Line Formats
	Cache Line Formats
	Cache Line Formats
	Cache Line Formats
	Cache Line Formats
	Cache Line Formats
	Cache Line Formats
	Cache Line Formats
	Cache Line Formats
	Cache Line Formats
	Cache Line Formats
	Cache Line Formats
	Cache Line Formats
	Cache Line Formats
	Cache Line Formats
	Cache Line Formats
	Cache Line Formats
	Cache Line Formats
	Cache Line Formats
	Cache Line Formats
	Cache Line Formats
	Cache Line Formats
	Cache Line Formats
	Cache Line Formats
	Cache Line Formats
	Cache Line Formats
	Cache Line Formats
	Cache Line Formats
	Cache Line Formats
	 �Microarchitectural Overview
	Microarchitectural Overview
	Microarchitectural Overview
	Microarchitectural Overview
	Microarchitectural Overview
	Microarchitectural Overview
	Microarchitectural Overview
	Performance
	ZeRØ Performance Overheads
	ZeRØ Performance Overheads
	ZeRØ Performance Overheads
	ZeRØ Performance Overheads
	ZeRØ Performance Overheads
	Performance Results (x86_64)
	Performance Results (x86_64)
	Performance Results (x86_64)
	Performance Results (x86_64)
	Performance Results (x86_64)
	Performance Results (x86_64)
	Performance Results (x86_64)
	ZeRØ does not compromise on security
	Handling Security Violations
	Handling Security Violations
	Handling Security Violations
	Handling Third Party Code
	Handling Third Party Code
	Handling Third Party Code
	Handling Third Party Code
	Limitations
	Limitations
	Limitations
	An efficient pointer integrity mechanism
	An efficient pointer integrity mechanism

